Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Professor Felix Parra Diaz

Professor of Physics

Research theme

  • Plasma physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
felix.parradiaz@physics.ox.ac.uk
Rudolf Peierls Centre for Theoretical Physics
  • About
  • Publications

Effect of the Shafranov shift and the gradient of β on intrinsic momentum transport in up-down asymmetric tokamaks

Plasma Physics and Controlled Fusion Institute of Physics 58:12 (2016) 125015

Authors:

Justin R Ball, Felix I Parra, Jungpyo Lee, Antoine J Cerfon

Abstract:

Tokamaks with up-down asymmetric poloidal cross-sections spontaneously rotate due to turbulent transport of momentum. In this work, we investigate the effect of the Shafranov shift on this intrinsic rotation, primarily by analyzing tokamaks with tilted elliptical flux surfaces. By expanding the Grad-Shafranov equation in the large aspect ratio limit we calculate the magnitude and direction of the Shafranov shift in tilted elliptical tokamaks. The results show that, while the Shafranov shift becomes updown asymmetric and depends strongly on the tilt angle of the flux surfaces, it is insensitive to the shape of the current and pressure profiles (when the geometry, total plasma current, and average pressure gradient are kept fixed). Next, local nonlinear gyrokinetic simulations of these MHD equilibria are performed with GS2, which reveal that the Shafranov shift can significantly enhance the momentum transport. However, to be consistent, the effect of β′ (i.e. the radial gradient of β) on the magnetic equilibrium was also included, which was found to significantly reduce momentum transport. Including these two competing effects broadens the rotation profile, but leaves the on-axis value of the rotation roughly unchanged. Consequently, the shape of the β profile has a significant effect on the rotation profile of an up-down asymmetric tokamak.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Moderation of neoclassical impurity accumulation in high temperature plasmas of helical devices

Nuclear Fusion IOP Publishing 57:1 (2016) 016016

Authors:

JL Velasco, I Calvo, S Satake, A Alonso, M Nunami, M Yokoyama, M Sato, T Estrada, JM Fontdecaba, M Liniers, KJ McCarthy, F Medina, B Ph Van Milligen, M Ochando, Felix Parra Diaz, H Sugama, A Zhezhera

Abstract:

Achieving impurity and helium ash control is a crucial issue in the path towards fusion-grade magnetic confinement devices, and this is particularly the case of helical reactors, whose low-collisionality ion-root operation scenarios usually display a negative radial electric field which is expected to cause inwards impurity pinch. In this work we discuss, based on experimental measurements and standard predictions of neoclassical theory, how plasmas of very low ion collisionality, similar to those observed in the impurity hole of the large helical device (Yoshinuma et al and The LHD Experimental Group 2009 Nucl. Fusion 49 062002, Ida et al and The LHD Experimental Group 2009 Phys. Plasmas 16 056111 and Yokoyama et al and LHD Experimental Group 2002 Nucl. Fusion 42 143), can be an exception to this general rule, and how a negative radial electric field can coexist with an outward impurity flux. This interpretation is supported by comparison with documented discharges available in the International Stellarator-Heliotron Profile Database, and it can be extrapolated to show that achievement of high ion temperature in the core of helical devices is not fundamentally incompatible with low core impurity content.
More details from the publisher
Details from ORA
More details

Parallel impurity dynamics in the TJ-II stellarator

Plasma Physics and Controlled Fusion IOP Science 58:7 (2016) 074009

Authors:

JA Alonso, JL Velasco, I Calvo, T Estrada, JM Fontdecaba, JM García-Regaña, J Geiger, M Landreman, KJ McCarthy, F Medina, BPV Milligen, MA Ochando, Felix Parra

Abstract:

We review in a tutorial fashion some of the causes of impurity density variations along field lines and radial impurity transport in the moment approach framework. An explicit and compact form of the parallel inertia force valid for arbitrary toroidal geometry and magnetic coordinates is derived and shown to be non-negligible for typical TJ-II plasma conditions. In the second part of the article, we apply the fluid model including main ion-impurity friction and inertia to observations of asymmetric emissivity patterns in neutral beam heated plasmas of the TJ-II stellarator. The model is able to explain qualitatively several features of the radiation asymmetry, both in stationary and transient conditions, based on the calculated in-surface variations of the impurity density.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Scaling of up–down asymmetric turbulent momentum flux with poloidal shaping mode number in tokamaks

Plasma Physics and Controlled Fusion IOP Publishing 58:5 (2016) 055016

Authors:

Justin Ball, Felix I Parra
More details from the publisher
More details
Details from ArXiV

Poloidal tilting symmetry of high order tokamak flux surface shaping in gyrokinetics

Plasma Physics and Controlled Fusion IOP Publishing 58:4 (2016) 045023

Authors:

Justin Ball, Felix I Parra, Michael Barnes
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet