Turbulent transport of impurities in 3D devices
Nuclear Fusion IOP Publishing 61:11 (2021) 116019
Abstract:
The evidence of a large diffusive turbulent contribution to the radial impurity transport in Wendelstein 7-X (W7-X) plasmas has been experimentally inferred during the first campaigns and numerically confirmed by means of gyrokinetic simulations with the code stella. In general, the absence of strong impurity accumulation during the initial W7-X campaigns is attributed to this diffusive term. Given the large variety of possible stellarator configurations, in the present work the diffusive contribution is also calculated in other stellarator plasmas. In particular, a numerical cross-device comparison is presented, where the diffusion (D) and convection (V) coefficients of carbon and iron impurities produced by ion-temperature-gradient (ITG) turbulence are obtained. The simulations have been performed for the helias W7-X, the heliotron LHD, the heliac TJ-II and the quasi-axisymmetric stellarator NCSX at the radial position r/a = 0.75. The results show that, although the size of D and V can differ across the four devices, inward convection is found for all of them. For W7-X, TJ-II and NCSX the two coefficients are comparable and the turbulent peaking factor is surprisingly similar. In LHD, appreciably weaker diffusive and convective impurity transport and significantly larger turbulent peaking factor, in comparison with the other three stellarators, are predicted. All this suggests that ITG turbulence, although not strongly, would lead to negative impurity density gradients in stellarators. Then, considering mixed ITG/trapped electron mode (TEM) turbulence for the specific case of W7-X, it has been quantitatively assessed to what degree pellet fueled reduced turbulence scenarios feature reduced turbulent transport of impurities as well. The results for trace iron impurities show that, although their turbulent transport is not entirely suppressed, a significant reduction of the convection and a stronger decrease of the diffusion term are found. Although the diffusion is still above neoclassical levels, the neoclassical convection would gain under such conditions a greater specific weight on the dynamics of impurities in comparison with standard ECRH scenarios without pellet fueling.Turbulent impurity transport simulations in Wendelstein 7-X plasmas
Journal of Plasma Physics Cambridge University Press 87:1 (2021) 855870103
Abstract:
A study of turbulent impurity transport by means of quasilinear and nonlinear gyrokinetic simulations is presented for Wendelstein 7-X (W7-X). The calculations have been carried out with the recently developed gyrokinetic code stella. Different impurity species are considered in the presence of various types of background instabilities: ion temperature gradient (ITG), trapped electron mode (TEM) and electron temperature gradient (ETG) modes for the quasilinear part of the work; ITG and TEM for the nonlinear results. While the quasilinear approach allows one to draw qualitative conclusions about the sign or relative importance of the various contributions to the flux, the nonlinear simulations quantitatively determine the size of the turbulent flux and check the extent to which the quasilinear conclusions hold. Although the bulk of the nonlinear simulations are performed at trace impurity concentration, nonlinear simulations are also carried out at realistic effective charge values, in order to know to what degree the conclusions based on the simulations performed for trace impurities can be extrapolated to realistic impurity concentrations. The presented results conclude that the turbulent radial impurity transport in W7-X is mainly dominated by ordinary diffusion, which is close to that measured during the recent W7-X experimental campaigns. It is also confirmed that thermodiffusion adds a weak inward flux contribution and that, in the absence of impurity temperature and density gradients, ITG- and TEM-driven turbulence push the impurities inwards and outwards, respectively.Zonally dominated dynamics and Dimits threshold in curvature-driven ITG turbulence
Journal of Plasma Physics Cambridge University Press 86:5 (2020) 855860502
Abstract:
The saturated state of turbulence driven by the ion-temperature-gradient instability is investigated using a two-dimensional long-wavelength fluid model that describes the perturbed electrostatic potential and perturbed ion temperature in a magnetic field with constant curvature (a 𝑍-pinch) and an equilibrium temperature gradient. Numerical simulations reveal a well-defined transition between a finite-amplitude saturated state dominated by strong zonal-flow and zonal temperature perturbations, and a blow-up state that fails to saturate on a box-independent scale. We argue that this transition is equivalent to the Dimits transition from a low-transport to a high-transport state seen in gyrokinetic numerical simulations (Dimits et al., Phys. Plasmas, vol. 7, 2000, 969). A quasi-static staircase-like structure of the temperature gradient intertwined with zonal flows, which have patch-wise constant shear, emerges near the Dimits threshold. The turbulent heat flux in the low-collisionality near-marginal state is dominated by turbulent bursts, triggered by coherent long-lived structures closely resembling those found in gyrokinetic simulations with imposed equilibrium flow shear (van Wyk et al., J. Plasma Phys., vol. 82, 2016, 905820609). The breakup of the low-transport Dimits regime is linked to a competition between the two different sources of poloidal momentum in the system – the Reynolds stress and the advection of the diamagnetic flow by the 𝐸×𝐵 flow. By analysing the linear ion-temperature-gradient modes, we obtain a semi-analytic model for the Dimits threshold at large collisionality.Linear pedestal ETG
University of Oxford (2020)
Abstract:
Refer to readme.pdf in the repository.Impact of main ion pressure anisotropy on stellarator impurity transport
Nuclear Fusion IOP Publishing 60 (2019) 016035