Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Raymond Pierrehumbert FRS

Professor of Planetary Physics

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
  • Planetary Climate Dynamics
  • Solar system
raymond.pierrehumbert@physics.ox.ac.uk
Telephone: 01865 (2)72892
Atmospheric Physics Clarendon Laboratory, room Room 211
Site for my textbook, Principles of Planetary Climate
Pierrehumbert Group Site
  • About
  • Publications

A geochemical view on the ubiquity of CO2 on rocky exoplanets with atmospheres

(2025)

Authors:

Claire Marie Guimond, Oliver Shorttle, Raymond T Pierrehumbert

Abstract:

To aid the search for atmospheres on rocky exoplanets, we should know what to look for. An unofficial paradigm is to anticipate CO2 present in these atmospheres, through analogy to the solar system and through theoretical modelling. This CO2 would be outgassed from molten silicate rock produced in the planet’s mostly-solid interior—an ongoing self-cooling mechanism that should proceed, in general, so long as the planet has sufficient internal heat to lose.Outgassing of CO2 requires relatively oxidising conditions. Previous work has noted the importance of how oxidising the planet interior is (the oxygen fugacity), which depends strongly on its rock composition. Current models presume that redox reactions between iron species control oxygen fugacity. However, iron alone need not be the sole dictator of how oxidising a planet is. Indeed, carbon itself is a powerful redox element, with great potential to feed back upon the mantle redox state as it melts. Whilst Earth is carbon-poor, even a slightly-higher volatile endowment could trigger carbon-powered geochemistry.We offer a new framework for how carbon is transported from solid planetary interior to atmosphere. The model incorporates realistic carbon geochemistry constrained by recent experiments on CO2 solubility in molten silicate, as well as redox couplings between carbon and iron that have never before been applied to exoplanets. We also incorporate a coupled 1D energy- and mass-balance model to provide first-order predictions of the rate of volcanism.We show that carbon-iron redox coupling maintains interior oxygen fugacity in a narrow range: more reducing than Earth magma, but not reducing enough to destabilise CO2 gas. We predict that most secondary atmospheres, if present, should contain CO2, although the total pressure could be low. An atmospheric non-detection may indicate a planet either born astonishingly dry, or having shut off its internal heat engine.
More details from the publisher

Photochemistry versus Escape in the Trappist-1 planets.

(2025)

Authors:

Sarah Blumenthal, Richard Chatterjee, Harrison Nicholls, Louis Amard, Shang-Min Tsai, Tad Komacek, Raymond Pierrehumbert

Abstract:

Survive or not survive, that is the question of the 500-hour JWST Rocky Worlds DDT Program. Whether a terrestrial planets’ atmosphere can suffer under the intense XUV of its host, or if it completely escapes, these are the questions we explore. Zahnle & Catling (2017) defined the Cosmic Shoreline, but recent observations from JWST reveal airless worlds around M-stars, calling for a refinement of this “receding” shoreline (Pass et al. 2025). M-stars spend a longer time in pre-main sequence, subjecting their orbiting worlds to some higher intensity XUV activity. This complicates our present understanding of this shoreline. Investigating chemical effects of planet-star interactions could be the key to a more complete picture of this shoreline.  We investigate the interplay between photochemistry, mixing, and escape of carbon dioxide atmospheres under intense and mild XUV fluxes as follow on work to both Johnstone et al. (2018) and Nakayama et al. (2022). We expand on this work by adopting thermal structure models from Nakayama et al. (2022) and apply them to identify key chemical pathways for escape. We create a reduced C-O chemical network including neutral and ionic species to identify these pathways. As photochemistry simulations take into account many reactions, these 1D calculations are too computationally expensive to be done in 3D. Although rudimentary at best, the mixing parameter– eddy diffusion term, K_zz, comprises the dynamical element of 1D photochemical simulations. Here, we consider the mixing of photochemical products in competition with escape to explore the chemical pathways of retention and loss. We compare the photochemical model results for active and inactive cases for the Trappist-1 system planets. Then, using the resulting composition-dependent heating and cooling rates for Trappist-1 planets, we assess their propensity for efficient atomic line cooling versus escape. We follow the work of Chatterjee & Pierrehumbert (2024) in this assessment.  Finally, using our pathway analysis, we find an analytical formula for calculating an energy-limited escape boundary for these planets based on composition.  It is important here to note the limitations of 1D work. First, there exists an exchange of rigor between modelling chemistry and dynamics. Insights from this work are ripe for implementation into 3D GCMs, especially in response to incorporating UV-driven processes for thermospheric modelling mentioned in Ding and Wordsworth (2019). Second, interaction with the interior is important in the early phase of planetary formation, i.e., the magma ocean phase. Due to exchange between atmosphere and magma early in the planet’s formation, incorporation with an interior-atmosphere model would better constrain higher pressure chemical abundances. Although this work focuses on the upper atmosphere, extrapolation to the surface environment is a key goal for understanding a planet.  Considering planet-star interaction is imperative for the selection of targets for observation. However, it is also important when considering anomalous detections of atmospheres around planets predicted to not have an atmosphere. This could be a first step in determining an atmosphere as non-primary and/or distinguishing between an airless planet and one with high altitude haze. 
More details from the publisher

Super-Earth lava planet from birth to observation: photochemistry, tidal heating, and volatile-rich formation

(2025)

Authors:

Harrison Nicholls, Tim Lichtenberg, Richard D Chatterjee, Claire Marie Guimond, Emma Postolec, Raymond T Pierrehumbert

Abstract:

Larger-than-Earth exoplanets are sculpted by strong stellar irradiation, but it is unknown whence they originate. Two propositions are that they formed with rocky interiors and hydrogen-rich envelopes (‘gas-dwarfs’), or with bulk compositions rich in water-ices (‘water-worlds’) . Multiple observations of super-Earth L 98-59 d have revealed its low bulk-density, consistent with substantial volatile content alongside a rocky/metallic interior, and recent JWST spectroscopy evidences a high mean molecular weight atmosphere. Its density and composition make it a waymarker for disentangling the processes which separate super-Earths and sub-Neptunes across geological timescales. We simulate the possible pathways for L 98-59 d from birth up to the present day using a comprehensive evolutionary modelling framework. Emerging from our calculations is a novel self-limiting mechanism between radiative cooling, tidal heating, and mantle rheology, which we term the 'radiation-tide-rheology feedback'. Coupled numerical modelling yields self-limiting tidal heating estimates that are up to two orders of magnitude lower than previous calculations, and yet are still large enough to enable the extension of primordial magma oceans to Gyr timescales. Our analysis indicates that the planet formed with a large amount (>1.8 mass%) of sulfur and hydrogen, and a chemically-reducing mantle; inconsistent with both the canonical gas-dwarf and water-world scenarios. A thick atmosphere and tidal heating sustain a permanent deep magma ocean, allowing the dissolution and retention of volatiles within its mantle. Transmission features can be explained by in-situ photochemical production of SO2 in a high-molecular weight H2-H2S background. These results subvert the emerging gas-dwarf vs. water-world dichotomy of small planet categorisation, inviting a more nuanced classification framework. We show that interactions between planetary interiors and atmospheres shape their observable characteristics over billions of years.
More details from the publisher

What are subNeptunes made of?

(2025)

Abstract:

This talk will cover the state of the art in whole-planet subNeptune modelling, and needs for the future.  Inferences about the composition of the deep envelope can be made on the basis of the way chemical transformations in the deep envelope may be evidenced in the observable atmosphere, such as has been attempted, for example, regarding the presence or absence of NH3 in the observable atmospheres of subNeptunes.  Such inferences require an understanding not only of deep envelope chemistry, but also of vertical mixing processes. The mixing process engages a number of poorly understood phenomena, such as mixing rates through stably stratified (nonconvective) internal radiative layers.  The occurrence of such radiative layers can be induced by compositional suppression of convection (e.g. due to high molecular weight H2O in an H2-rich atmosphere). We will review our modelling studies regarding this phenomenon.  Typically, the envelope-silicate interface is hot enough that the interface takes the form of a magma ocean, so compositional interchange with the magma ocean becomes crucial. This exchange includes rock vapours as well as lower molecular weight volatiles.  Our work on magma ocean exchanges will be reviewed. We highlight the importance of mineral physics experiments and molecular dynamics to provide crucially needed (and largely absent) thermodynamic parameters, particularly at high pressure.  At sufficiently high temperatures, silicate itself can become supercritical so that the distinction between silicate melt and silicate vapour disappears and the silicate substance becomes completely miscible with the lower molecular weight envelope.  Modeling and experiment regarding this novel and largely unexplored regime is particularly needed.
More details from the publisher

AGNI: A radiative-convective model for lava planet atmospheres

Journal of Open Source Software The Open Journal 10:109 (2025) 7726-7726

Authors:

Harrison Nicholls, Raymond Pierrehumbert, Tim Lichtenberg
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet