Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Raymond Pierrehumbert FRS

Professor of Planetary Physics

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
  • Planetary Climate Dynamics
  • Solar system
raymond.pierrehumbert@physics.ox.ac.uk
Telephone: 01865 (2)72892
Atmospheric Physics Clarendon Laboratory, room Room 211
Site for my textbook, Principles of Planetary Climate
Pierrehumbert Group Site
  • About
  • Publications

Comment on ‘Unintentional unfairness when applying new greenhouse gas emissions metrics at country level’

Environmental Research Letters IOP Publishing 16:6 (2021) 068001

Authors:

Michelle Cain, Keith Shine, David Frame, John Lynch, Adrian Macey, Ray Pierrehumbert, Myles Allen
More details from the publisher
More details

3D Convection-resolving Model of Temperate, Tidally Locked Exoplanets

ASTROPHYSICAL JOURNAL 913:2 (2021) ARTN 101

Authors:

Maxence Lefevre, Martin Turbet, Raymond Pierrehumbert
More details from the publisher
Details from ORA
More details
More details

Evidence for disequilibrium chemistry from vertical mixing in hot Jupiter atmospheres: A comprehensive survey of transiting close-in gas giant exoplanets with warm-Spitzer/IRAC

ASTRONOMY & ASTROPHYSICS 648 (2021) ARTN A127

Authors:

Claire Baxter, Jean-Michel Desert, Shang-Min Tsai, Kamen O Todorov, Jacob L Bean, Drake Deming, Vivien Parmentier, Jonathan J Fortney, Michael Line, Daniel Thorngren, Raymond T Pierrehumbert, Adam Burrows, Adam P Showman
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Agriculture's contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors

Frontiers in Sustainable Food Systems Frontiers Media 4 (2021) 518039

Authors:

John Lynch, Michelle Cain, David Frame, Raymond Pierrehumbert

Abstract:

Agriculture is a significant contributor to anthropogenic global warming, and reducing agricultural emissions—largely methane and nitrous oxide—could play a significant role in climate change mitigation. However, there are important differences between carbon dioxide (CO2), which is a stock pollutant, and methane (CH4), which is predominantly a flow pollutant. These dynamics mean that conventional reporting of aggregated CO2-equivalent emission rates is highly ambiguous and does not straightforwardly reflect historical or anticipated contributions to global temperature change. As a result, the roles and responsibilities of different sectors emitting different gases are similarly obscured by the common means of communicating emission reduction scenarios using CO2-equivalence. We argue for a shift in how we report agricultural greenhouse gas emissions and think about their mitigation to better reflect the distinct roles of different greenhouse gases. Policy-makers, stakeholders, and society at large should also be reminded that the role of agriculture in climate mitigation is a much broader topic than climate science alone can inform, including considerations of economic and technical feasibility, preferences for food supply and land-use, and notions of fairness and justice. A more nuanced perspective on the impacts of different emissions could aid these conversations.
More details from the publisher
Details from ORA
More details
More details

Vertically resolved magma ocean–protoatmosphere evolution: H2 , H2O, CO2, CH4, CO, O2, and N2 as primary absorbers

Journal of Geophysical Research: Planets American Geophysical Union 126:2 (2021) e2020JE006711

Authors:

Tim Lichtenberg, Dan J Bower, Mark Hammond, Ryan Boukrouche, Patrick Sanan, Shang‐Min Tsai, Raymond T Pierrehumbert

Abstract:

The earliest atmospheres of rocky planets originate from extensive volatile release during magma ocean epochs that occur during assembly of the planet. These establish the initial distribution of the major volatile elements between different chemical reservoirs that subsequently evolve via geological cycles. Current theoretical techniques are limited in exploring the anticipated range of compositional and thermal scenarios of early planetary evolution, even though these are of prime importance to aid astronomical inferences on the environmental context and geological history of extrasolar planets. Here, we present a coupled numerical framework that links an evolutionary, vertically‐resolved model of the planetary silicate mantle with a radiative‐convective model of the atmosphere. Using this method we investigate the early evolution of idealized Earth‐sized rocky planets with end‐member, clear‐sky atmospheres dominated by either H2, H2O, CO2, CH4, CO, O2, or N2. We find central metrics of early planetary evolution, such as energy gradient, sequence of mantle solidification, surface pressure, or vertical stratification of the atmosphere, to be intimately controlled by the dominant volatile and outgassing history of the planet. Thermal sequences fall into three general classes with increasing cooling timescale: CO, N2, and O2 with minimal effect, H2O, CO2, and CH4 with intermediate influence, and H2 with several orders of magnitude increase in solidification time and atmosphere vertical stratification. Our numerical experiments exemplify the capabilities of the presented modeling framework and link the interior and atmospheric evolution of rocky exoplanets with multi‐wavelength astronomical observations.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet