Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Raymond Pierrehumbert FRS

Professor of Planetary Physics

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
  • Planetary Climate Dynamics
  • Solar system
raymond.pierrehumbert@physics.ox.ac.uk
Telephone: 01865 (2)72892
Atmospheric Physics Clarendon Laboratory, room Room 211
Site for my textbook, Principles of Planetary Climate
Pierrehumbert Group Site
  • About
  • Publications

Cumulative carbon as a policy framework for achieving climate stabilization.

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 370:1974 (2012) 4365-4379

Authors:

H Damon Matthews, Susan Solomon, Raymond Pierrehumbert

Abstract:

The primary objective of the United Nations Framework Convention on Climate Change is to stabilize greenhouse gas concentrations at a level that will avoid dangerous climate impacts. However, greenhouse gas concentration stabilization is an awkward framework within which to assess dangerous climate change on account of the significant lag between a given concentration level and the eventual equilibrium temperature change. By contrast, recent research has shown that global temperature change can be well described by a given cumulative carbon emissions budget. Here, we propose that cumulative carbon emissions represent an alternative framework that is applicable both as a tool for climate mitigation as well as for the assessment of potential climate impacts. We show first that both atmospheric CO(2) concentration at a given year and the associated temperature change are generally associated with a unique cumulative carbon emissions budget that is largely independent of the emissions scenario. The rate of global temperature change can therefore be related to first order to the rate of increase of cumulative carbon emissions. However, transient warming over the next century will also be strongly affected by emissions of shorter lived forcing agents such as aerosols and methane. Non-CO(2) emissions therefore contribute to uncertainty in the cumulative carbon budget associated with near-term temperature targets, and may suggest the need for a mitigation approach that considers separately short- and long-lived gas emissions. By contrast, long-term temperature change remains primarily associated with total cumulative carbon emissions owing to the much longer atmospheric residence time of CO(2) relative to other major climate forcing agents.
More details from the publisher
More details
More details

Sea glacier flow and dust transport on Snowball Earth

Geophysical Research Letters American Geophysical Union (AGU) 38:17 (2011) n/a-n/a

Authors:

Dawei Li, Raymond T Pierrehumbert
More details from the publisher

Some fine points on radiative forcing

Physics Today AIP Publishing 64:7 (2011) 12-12
More details from the publisher
More details

HYDROGEN GREENHOUSE PLANETS BEYOND THE HABITABLE ZONE

The Astrophysical Journal Letters American Astronomical Society 734:1 (2011) l13

Authors:

Raymond Pierrehumbert, Eric Gaidos
More details from the publisher

Climate of the Neoproterozoic

Annual Review of Earth and Planetary Sciences Annual Reviews 39:1 (2011) 417-460

Authors:

RT Pierrehumbert, DS Abbot, A Voigt, D Koll
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet