Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Benedikt Placke

Leverhulme Peierls Fellow

Research theme

  • Quantum information and computation
  • Quantum materials

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
benedikt.placke@physics.ox.ac.uk
Rudolf Peierls Centre for Theoretical Physics, room 50.28
  • About
  • Publications

Critical properties of the Ising model in hyperbolic space.

Physical review. E 101:2-1 (2020) 022124

Authors:

Nikolas P Breuckmann, Benedikt Placke, Ananda Roy

Abstract:

The Ising model exhibits qualitatively different properties in hyperbolic space in comparison to its flat space counterpart. Due to the negative curvature, a finite fraction of the total number of spins reside at the boundary of a volume in hyperbolic space. As a result, boundary conditions play an important role even when taking the thermodynamic limit. We investigate the bulk thermodynamic properties of the Ising model in two- and three-dimensional hyperbolic spaces using Monte Carlo and high- and low-temperature series expansion techniques. To extract the true bulk properties of the model in the Monte Carlo computations, we consider the Ising model in hyperbolic space with periodic boundary conditions. We compute the critical exponents and critical temperatures for different tilings of the hyperbolic plane and show that the results are of mean-field nature. We compare our results to the "asymptotic" limit of tilings of the hyperbolic plane: the Bethe lattice, explaining the relationship between the critical properties of the Ising model on Bethe and hyperbolic lattices. Finally, we analyze the Ising model on three-dimensional hyperbolic space using Monte Carlo and high-temperature series expansion. In contrast to recent field theory calculations, which predict a non-mean-field fixed point for the ferromagnetic-paramagnetic phase-transition of the Ising model on three-dimensional hyperbolic space, our computations reveal a mean-field behavior.
More details from the publisher
More details
More details

Solvable Quantum Circuits in Tree+1 Dimensions

PRX Quantum American Physical Society

Authors:

Oliver Breach, Benedikt Placke, Pieter Claeys, Siddharth A Ashok Parameswaran
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet