Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Cosmic strings in hematite

Professor Paolo G. Radaelli OSI

Dr Lee's Professor

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Oxide electronics
Paolo.Radaelli@physics.ox.ac.uk
Telephone: 01865 (2)70957
Clarendon Laboratory, room 111
  • About
  • Research
  • Publications

Prof Radaelli recognised with an MPLS "Excellent Supervisor" Award

Physics Award Winners
Prof Radaelli is one of the 5 Oxford Physicists recognised in the inaugural "Excellence in Research Supervision" award

Read the story at this link

Excellence in Research Supervision

Evolution of magneto-orbital order upon B-site electron doping in Na1−xCaxMn7O12 quadruple perovskite manganites

Physical Review Letters American Physical Society 120:25 (2018) 257202

Authors:

Roger Johnson, F Mezzadri, P Manuel, DD Khalyavin, E Gilioli, Paolo GR Radaelli

Abstract:

We present the discovery and refinement by neutron powder diffraction of a new magnetic phase in the Na1-xCaxMn7O12 quadruple perovskite phase diagram, which is the incommensurate analogue of the well-known pseudo-CE phase of the simple perovskite manganites. We demonstrate that incommensurate magnetic order arises in quadruple perovskites due to the exchange interactions between A and B sites. Furthermore, by constructing a simple mean field Heisenberg exchange model that generically describes both simple and quadruple perovskite systems, we show that this new magnetic phase unifies a picture of the interplay between charge, magnetic and orbital ordering across a wide range of compounds.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Observation of magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure

Nature Materials Nature Publishing Group 17 (2018) 581-585

Authors:

Francis Chmiel, Noah Waterfield Price, Roger Johnson, AD Lamirand, J Schad, G van der Laan, DT Harris, C-B Eom, Paolo Radaelli

Abstract:

Vortices, occurring whenever a flow field ‘whirls’ around a one-dimensional core, are among the simplest topological structures, ubiquitous to many branches of physics. In the crystalline state, vortex formation is rare, since it is generally hampered by long-range interactions: in ferroic materials (ferromagnetic and ferroelectric), vortices are observed only when the effects of the dipole–dipole interaction are modified by confinement at the nanoscale1,2,3, or when the parameter associated with the vorticity does not couple directly with strain4. Here, we observe an unprecedented form of vortices in antiferromagnetic haematite (α-Fe2O3) epitaxial films, in which the primary whirling parameter is the staggered magnetization. Remarkably, ferromagnetic topological objects with the same vorticity and winding number as the α-Fe2O3 vortices are imprinted onto an ultra-thin Co ferromagnetic over-layer by interfacial exchange. Our data suggest that the ferromagnetic vortices may be merons (half-skyrmions, carrying an out-of plane core magnetization), and indicate that the vortex/meron pairs can be manipulated by the application of an in-plane magnetic field, giving rise to large-scale vortex–antivortex annihilation.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV
More details

Observation of magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure

Bulletin of the American Physical Society American Physical Society (2018)

Authors:

Francis Chmiel, Noah Price, Roger Johnson, A Lamirand, J Schad, GVD Laan, DT Harris, J Irwin, C-B Eom, Paolo Radaelli

Abstract:

Vortices are among the simplest topological structures, and occur whenever a flow field `whirls' around a one-dimensional core. They are ubiquitous to many branches of physics, from fluid dynamics to superconductivity and superfluidity, and are even predicted by some unified theories of particle interactions, where they might explain some of the largest-scale structures seen in today's Universe. In the crystalline state, vortex formation is rare, since it is generally hampered by long-range interactions: in ferroic materials (ferromagnetic and ferroelectric), vortices are only observed when the effects of the dipole-dipole interaction is modified by confinement at the nanoscale, or when the parameter associated with the vorticity does not couple directly with strain. Here, we present the discovery of a novel form of vortices in antiferromagnetic (AFM) hematite ($\alpha$-Fe$_2$O$_3$) epitaxial films, in which the primary whirling parameter is the staggered magnetisation. Remarkably, ferromagnetic (FM) topological objects with the same vorticity and winding number of the $\alpha$-Fe$_2$O$_3$ vortices are imprinted onto an ultra-thin Co ferromagnetic over-layer by interfacial exchange. Our data suggest that the ferromagnetic vortices may be merons (half-skyrmions, carrying an out-of-plane core magnetisation), and indicate that the vortex/meron pairs can be manipulated by the application of an in-plane magnetic field, H$_{\parallel}$, giving rise to large-scale vortex-antivortex annihilation.
Details from ORA

Evolution of magneto-orbital order upon B-site electron doping in Na1-xCaxMn7O12 quadruple perovskite manganites

(2018)

Authors:

RD Johnson, F Mezzadri, P Manuel, DD Khalyavin, E Gilioli, PG Radaelli
More details from the publisher

Breaking Symmetry with Light: Ultra-Fast Ferroelectricity and Magnetism from Three-Phonon Coupling

Physical review B: Condensed matter and materials physics American Physical Society (2018)

Abstract:

A theory describing how ferroic properties can emerge transiently in the ultra-fast regime by breaking symmetry with light through three-phonon coupling is presented. Particular emphasis is placed on the special case when two exactly degenerate mid-infra-red or THz phonons are resonantly pumped, since this situation can give rise to an exactly rectified ferroic response with damping envelopes of ~ 1 ps or less. Light-induced ferroelectricity and ferromagnetism are discussed in this context, and a number of candidate materials that could display these phenomena are proposed. The same analysis is also applied to the interpretation of previous femto-magnetism experiments, performed in different frequency ranges (visible and near-infrared), but sharing similar symmetry characteristics.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet