Polarizing an antiferromagnet by optical engineering of the crystal field
Nature Physics Nature Research 16 (2020) 937-941
Abstract:
Strain engineering is widely used to manipulate the electronic and magnetic properties of complex materials. For example, the piezomagnetic effect provides an attractive route to control magnetism with strain. In this effect, the staggered spin structure of an antiferromagnet is decompensated by breaking the crystal field symmetry, which induces a ferrimagnetic polarization. Piezomagnetism is especially appealing because, unlike magnetostriction, it couples strain and magnetization at linear order, and allows for bi-directional control suitable for memory and spintronics applications. However, its use in functional devices has so far been hindered by the slow speed and large uniaxial strains required. Here we show that the essential features of piezomagnetism can be reproduced with optical phonons alone, which can be driven by light to large amplitudes without changing the volume and hence beyond the elastic limits of the material. We exploit nonlinear, three-phonon mixing to induce the desired crystal field distortions in the antiferromagnet CoF2. Through this effect, we generate a ferrimagnetic moment of 0.2 μB per unit cell, nearly three orders of magnitude larger than achieved with mechanical strain.Micromagnetic modelling and imaging of vortex/merons structures in an oxide | metal heterostructure
Physical Review B American Physical Society 101:14 (2020) 144420
Abstract:
Using micromagnetic simulations, we have modelled the formation of imprinted merons and anti-merons in cobalt overlayers of different thickness (1-8 nm), stabilised by interfacial exchange with antiferromagnetic vortices in $\alpha$-Fe2O3. Structures similar to those observed experimentally could be obtained with reasonable exchange parameters, also in the presence of surface roughness. We produce simulated meron/antimeron images by magnetic force microscopy (MFM) and nitrogen-vacancy (N-V) centre microscopy, and established signatures of these topological structures in different experimental configurations.Magneto-optical Kerr switching properties of (CrI3)2 and (CrBr3/CrI3) bilayers
ACS Applied Electronic Materials American Chemical Society 2:5 (2020) 1373-1380
Abstract:
We explore the magneto-optical Kerr effect (MOKE) for different spin configurations of the (CrI3)2 bilayer and (CrBr3/CrI3) mixed bilayer using symmetry arguments and first-principles electronic structure calculations. Starting from CrX3 (X = I, Br) monolayers, we considered collinear ferromagnetic (FM) and layered antiferromagnetic (AFM) states for (CrI3)2 and (CrBr3/CrI3) bilayers. The AFM (CrI3)2 bilayer does not show MOKE, consistent with the presence of a symmetry operator combining inversion (I) and time reversal (T) symmetries. The FM state preserves I symmetry but breaks the T symmetry, thus allowing a nonzero Kerr angle, which is reversible by switching the FM spins. The (CrBr3/CrI3) bilayer breaks both the I and T symmetries and thus exhibits MOKE both in the FM state and, remarkably, in the AFM state. In both FM and AFM configurations, the Kerr angle switches by reversing the spins in both layers. Our study demonstrates that the MOKE spectra can help to characterize different magnetic configurations in these emerging two-dimensional (2D) magnetic materials due to a different stacking of the monolayers, even in the AFM case. Note that the present symmetry analyses and MOKE properties apply to more general 2D magnetic van der Waals heterostructures. Furthermore, we propose the (CrBr3/CrI3) bilayer as a promising candidate for AFM spintronics since the two time-reversed AFM states are associated with opposite Kerr rotation, i.e., they could be used as memory elements.Polarizing an antiferromagnet by optical engineering of the crystal field
(2020)
Controlling spin current polarization through non-collinear antiferromagnetism
(2019)