Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Cosmic strings in hematite

Professor Paolo G. Radaelli OSI

Dr Lee's Professor

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Oxide electronics
Paolo.Radaelli@physics.ox.ac.uk
Telephone: 01865 (2)70957
Clarendon Laboratory, room 111
  • About
  • Research
  • Publications

Prof Radaelli recognised with an MPLS "Excellent Supervisor" Award

Physics Award Winners
Prof Radaelli is one of the 5 Oxford Physicists recognised in the inaugural "Excellence in Research Supervision" award

Read the story at this link

Excellence in Research Supervision

Structural phase transition and magnetism in hexagonal srmno

(2006)

Authors:

A Daoud-Aladine, C Martin, LC Chapon, M Hervieu, KS Knight, M Brunelli, PG Radaelli
More details from the publisher

Structural phase transition and magnetism in hexagonal srmno

ArXiv cond-mat/0609235 (2006)

Authors:

A Daoud-Aladine, C Martin, LC Chapon, M Hervieu, KS Knight, M Brunelli, PG Radaelli

Abstract:

The structural and magnetic properties of the hexagonal four-layer form of SrMnO$_3$ have been investigated by combining magnetization measurements, electron diffraction and high-resolution synchrotron X-ray and neutron powder diffraction. Below 350K, there is subtle structural phase transition from hexagonal symmetry (space group $P6_3/mmc$) to orthorhombic symmetry (space group $C222_1$) where the hexagonal metric is preserved. The second-order phase transition involves a slight tilting of the corner-sharing Mn$_{2}$O$_{9}$ units composed of 2 face-sharing MnO$_6$ octahedra and the associated displacement of Sr$^{2+}$ cations. The phase transition is described in terms of symmetry-adapted displacement modes of the high symmetry phase. Upon further cooling, long range magnetic order with propagation vector $\mathbf{k}=(0,0,0)$ sets in below 300K. The antiferromagnetic structure, analyzed using representation theory, shows a considerably reduced magnetic moment indicating the crucial role played by direct exchange between Mn centers of the Mn$_{2}$O$_{9}$ units.
Details from ArXiV

Symmetry constraints on the electrical polarization in novel multiferroic materials

(2006)

Authors:

PG Radaelli, LC Chapon
More details from the publisher

Symmetry constraints on the electrical polarization in novel multiferroic materials

ArXiv cond-mat/0609087 (2006)

Authors:

PG Radaelli, LC Chapon

Abstract:

The symmetry conditions for the development of a macroscopic electrical polarization as a secondary order parameter to a magnetic ordering transition, and the constraints on the direction of the polarization vector, are determined by a non-conventional application of the theory of irreducible co-representations. In our approach, which is suitable for both magnetic and structural modulations, anti-unitary operators are employed to describe symmetry operations that exchange the propagation vector $\textbf{k}$ with $\textbf{-k}$, rather than operations combined with time-reversal as in classical \textit{corep} analysis. Unlike the conventional irreducible representations, co-representations can capture the full symmetry properties of the system even if the propagation vector is in the interior of the Brillouin zone. It is shown that ferroelectricity can develop even for a completely collinear structure, and that helical and cycloidal magnetic structures are not always polar. In some cases, symmetry allows the development of polarization parallel to the magnetic propagation vector. Our analysis also highlights the unique importance of magnetic commensurability, enabling one to derive the different symmetry properties of equivalent commensurate and incommensurate phases even for a completely generic propagation vector.
Details from ArXiV
More details from the publisher

24pZL-6 Structural Aspects of Metamagnetism in Ca_<2-x>Sr_xRuO_4 : Field Tuning of Orbital Occupation

(2006) 471

Authors:

M Kriener, M Braden, P Steffens, J Baier, O Schumann, T Zabel, T Lorenz, O Friedt, R Muller, A Gukasov, PG Radaelli, P Reutler, A Revcolevschi, S Nakatsuji, Y Maeno
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • Current page 39
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet