Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Cosmic strings in hematite

Professor Paolo G. Radaelli OSI

Dr Lee's Professor

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Oxide electronics
Paolo.Radaelli@physics.ox.ac.uk
Telephone: 01865 (2)70957
Clarendon Laboratory, room 111
  • About
  • Research
  • Publications

Prof Radaelli recognised with an MPLS "Excellent Supervisor" Award

Physics Award Winners
Prof Radaelli is one of the 5 Oxford Physicists recognised in the inaugural "Excellence in Research Supervision" award

Read the story at this link

Excellence in Research Supervision

Structural and Magnetic Properties of the Kagome Antiferromagnet YbBaCo4O7.

ChemInform Wiley 37:27 (2006) no-no

Authors:

A Huq, JF Mitchell, H Zheng, LC Chapon, PG Radaelli, KS Knight, PW Stephens
More details from the publisher

Competing magnetic interactions in the extended Kagome system YBaCo4O7

(2006)

Authors:

LC Chapon, PG Radaelli, H Zheng, JF Mitchell
More details from the publisher

Competing magnetic interactions in the extended Kagome system YBaCo4O7

ArXiv cond-mat/0605307 (2006)

Authors:

LC Chapon, PG Radaelli, H Zheng, JF Mitchell

Abstract:

YBaCo4O7 belongs to a new class of geometrically frustrated magnets like the pyrochlores, in which Co-spins occupy corners of tetrahedra. The structure can be viewed as an alternating stacking of Kagome and triangular layers. Exactly half of the triangular units of the Kagome plane are capped by Co ions to form columns running perpendicular to the Kagome sheets. Neutron powder diffraction reveals a broad temperature range of diffuse magnetic scattering, followed by long range magnetic ordering below 110K. A unique low-temperature magnetic structure simultaneously satisfies an S=0 arrangement in the uncapped triangular units and antiferromagnetic coupling along the columns. A spin reorientation above 30K tracks the relative strengths of the in-plane and out-of-plane interactions.
Details from ArXiV
More details from the publisher

Structural and magnetic properties of the Kagomé antiferromagnet YbBaCo4O7

Journal of Solid State Chemistry 179:4 (2006) 1136-1145

Authors:

A Huq, JF Mitchell, H Zheng, LC Chapon, PG Radaelli, KS Knight, PW Stephens

Abstract:

The mixed-valent compound YbBaCo4O7 is built up of Kagomé sheets of CoO4 tetrahedra, linked in the third dimension by a triangular layer of CoO4 tetrahedra in an analogous fashion to that found in the known geometrically frustrated magnets such as pyrochlores and SrCr9xGa12-9xO 19 (SCGO). We have undertaken a study of the structural and magnetic properties of this compound using combined high-resolution powder neutron and synchrotron X-ray diffraction. YbBaCo4O7 undergoes a first-order trigonal→orthorhombic phase transition at 175 K. We show that this transition occurs as a response to a markedly underbonded Ba2+ site in the high-temperature phase and does not appear to involve charge ordering of Co2+/Co3+ ions in the tetrahedra. The symmetry lowering relieves the geometric frustration of the structure, and a long-range-ordered 3-D antiferromagnetic state develops below 80 K.
More details from the publisher
More details

The preparation and structures of hydrogen ordered phases of ice.

Science 311:5768 (2006) 1758-1761

Authors:

Christoph G Salzmann, Paolo G Radaelli, Andreas Hallbrucker, Erwin Mayer, John L Finney

Abstract:

Two hydrogen ordered phases of ice were prepared by cooling the hydrogen disordered ices V and XII under pressure. Previous attempts to unlock the geometrical frustration in hydrogen-bonded structures have focused on doping with potassium hydroxide and have had success in partially increasing the hydrogen ordering in hexagonal ice I (ice Ih). By doping ices V and XII with hydrochloric acid, we have prepared ice XIII and ice XIV, and we analyzed their structures by powder neutron diffraction. The use of hydrogen chloride to release geometrical frustration opens up the possibility of completing the phase diagram of ice.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Current page 43
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet