Testing the Effectiveness of Protocols for Removal of Common Conservation Treatments for Radiocarbon Dating
Abstract:
The Viking Great Army in England: new dates from the Repton charnel
Abstract:
Atmospheric CO2 effect on stable carbon isotope composition of terrestrial fossil archives.
Abstract:
The 13C/12C ratio of C3 plant matter is thought to be controlled by the isotopic composition of atmospheric CO2 and stomatal response to environmental conditions, particularly mean annual precipitation (MAP). The effect of CO2 concentration on 13C/12C ratios is currently debated, yet crucial to reconstructing ancient environments and quantifying the carbon cycle. Here we compare high-resolution ice core measurements of atmospheric CO2 with fossil plant and faunal isotope records. We show the effect of pCO2 during the last deglaciation is stronger for gymnosperms (-1.4 ± 1.2‰) than angiosperms/fauna (-0.5 ± 1.5‰), while the contributions from changing MAP are -0.3 ± 0.6‰ and -0.4 ± 0.4‰, respectively. Previous studies have assumed that plant 13C/12C ratios are mostly determined by MAP, an assumption which is sometimes incorrect in geological time. Atmospheric effects must be taken into account when interpreting terrestrial stable carbon isotopes, with important implications for past environments and climates, and understanding plant responses to climate change.The chronology of reindeer hunting on Norway's highest ice patches
Abstract:
New protocol for compound specific radiocarbon analysis of archaeological bones
Abstract:
Rationale
For radiocarbon results to be accurate, samples must be free of contaminating carbon. Sample pre-treatment using an HPLC approach has been developed at the Oxford Radiocarbon Accelerator Unit (ORAU) as an alternative to conventional methods for dating heavily contaminated bones. This approach isolates hydroxyproline from bone collagen, enabling a purified bone-specific fraction to then be radiocarbon dated by accelerator mass spectrometry (AMS).
Methods
Using semi-preparative chromatography and non-carbon based eluents, this technique enables the separation of underivatised amino acids liberated by hydrolysis of extracted bone collagen. A particular focus has been the isolation of hydroxyproline for single compound AMS dating since this amino acid is one of the main contributors to the total amount of carbon in mammalian collagen. Our previous approach, involving a carbon-free aqueous mobile phase, required a 2-step separation using two different chromatographic columns.2
Results
This paper reports significant improvements that have been recently made to the method to enable faster semi-preparative separation of hydroxyproline from bone collagen, making the method more suitable for routine radiocarbon dating of contaminated and/or poorly preserved bone samples by AMS. All steps of the procedure, from the collagen extraction to the correction of the AMS data, are described.
Conclusions
The modifications to the hardware and to the method itself have reduced significantly the time required for the preparation of each sample. This makes it easier for other radiocarbon facilities to implement and use this approach as a routine method for preparing contaminated bone samples.