Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Christopher Ramsey

Professor of Archaeological Science

Research theme

  • Accelerator physics
  • Climate physics
  • Instrumentation

Sub department

  • Atomic and Laser Physics
christopher.ramsey@physics.ox.ac.uk
Telephone: 01865285215
School of Archaeology
  • About
  • Publications

Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 36

Archaeometry Wiley 60:3 (2018) 628-640

Authors:

Thomas Higham, Christopher B Bronk Ramsey, David Chivall, Joseph T Graystone, Diane Baker, Emma V Henderson, Peter W Ditchfield

Abstract:

This is the thirty‐sixth list of AMS radiocarbon determinations measured at the Oxford Radiocarbon Accelerator Unit (ORAU). Amongst some of the sites included here are the latest series of determinations from the key sites of El Mirón (Spain) and Sutton Courtney (UK), as well as others dating to the Palaeolithic, Mesolithic and later periods. Submitters of the material provide comments on the significance of the results.
More details from the publisher
Details from ORA
More details
More details

Ultra-distal fine ash occurrences of the Icelandic Askja-S Plinian eruption deposits in Southern Carpathian lakes: New age constraints on a continental scale tephrostratigraphic marker

Quaternary Science Reviews Elsevier 188 (2018) 174-182

Authors:

R Kearney, Paul Albert, RA Staff, I Pál, D Veres, E Magyari, C Bronk Ramsey

Abstract:

Here we present the results of the first cryptotephra investigation of two Late glacial-Holocene lake records from the Southern Carpathian Mountains in Romania, Lake Brazi and Lake Lia. The discovery of an important Icelandic tephrostratigraphic marker, the Askja-S, in the sedimentary records of both sites significantly extends the known ash dispersal from this Plinian eruption. Bayesian age-depth modelling of available radiocarbon (14C) data from both sedimentary records allows us to further refine the depositional age of this ultra-distal tephra. In combination with age constraints on the tephra from other well-dated European sites, we produce an updated age for this key tephrostratigraphic marker of 10,824 ± 97 cal yrs BP (95.4% range). The Askja-S tephra is stratigraphically positioned after the palaeoenvironmental proxy response to the Preboreal Oscillation at both sites. The widespread distribution of this tephra across Europe offers the potential to assess spatio-temporal variability of this climatic signal. The discovery of the Askja-S in lake records from the Southern Carpathians highlights the likelihood of finding other ultra-distal (Icelandic) cryptotephra marker layers within the region. Additionally, given the location of the Carpathian region, it offers the opportunity to further enhance and integrate tephrostratigraphic frameworks of north-western Europe with those of the Mediterranean and Anatolia regions, which will enable a more precise comparison of palaeoenvironmental archives across Europe.
More details from the publisher
Details from ORA
More details
More details

The worldwide marine radiocarbon reservoir effect: Definitions, mechanisms and prospects

Reviews of Geophysics American Geophysical Union 56:1 (2018) 278-305

Authors:

Eduardo Queiroz-Alves, Kita Macario, Philippa Ascough, Christopher Bronk Ramsey

Abstract:

When a carbon reservoir has a lower content of radiocarbon relative to the atmosphere, this is referred to as a reservoir effect. This is expressed as an offset between the radiocarbon ages of samples from the two reservoirs at a single point in time. The marine reservoir effect (MRE) has been a major concern in the radiocarbon community, as it introduces an additional source of error that is often difficult to accurately quantify. For this reason, researchers are often reluctant to date marine material where they have another option. The influence of this phenomenon makes the study of the MRE important for a broad range of applications. The advent of Accelerator Mass Spectrometry (AMS) has reduced sample size requirements and increased measurement precision, in turn increasing the number of studies seeking to measure marine samples. These studies rely on overcoming the influence of the MRE on marine radiocarbon dates through the worldwide quantification of the local parameter ΔR, i.e. the local variation from the global average MRE. Furthermore, the strong dependence on ocean dynamics makes the MRE a useful indicator for changes in oceanic circulation, carbon exchange between reservoirs and the fate of atmospheric CO2, as well as their impact on Earth's climate. This article explores data from the Marine Reservoir Database and reviews the place of natural radiocarbon in oceanic records, focusing on key questions (e.g., changes in ocean dynamics) that have been answered by MRE studies and on their application to different subjects.
More details from the publisher
Details from ORA
More details

Global peak in atmospheric radiocarbon provides a potential definition for the onset of the anthropocene epoch in 1965

Scientific Reports Springer Nature 8 (2018) 3293

Authors:

CSM Turney, J Palmer, M Maslin, A Hogg, CJ Fogwill, J Southon, P Fenwick, G Helle, JM Wilmshurst, M McGlone, Christopher Ramsey, Z Thomas, M Lipson, B Beaven, RT Jones, O Andrews, Q Hua

Abstract:

Anthropogenic activity is now recognised as having profoundly and permanently altered the Earth system, suggesting we have entered a human-dominated geological epoch, the ‘Anthropocene’. To formally define the onset of the Anthropocene, a synchronous global signature within geological-forming materials is required. Here we report a series of precisely-dated tree-ring records from Campbell Island (Southern Ocean) that capture peak atmospheric radiocarbon (14C) resulting from Northern Hemisphere-dominated thermonuclear bomb tests during the 1950s and 1960s. The only alien tree on the island, a Sitka spruce (Picea sitchensis), allows us to seasonally-resolve Southern Hemisphere atmospheric 14C, demonstrating the ‘bomb peak’ in this remote and pristine location occurred in the last-quarter of 1965 (October-December), coincident with the broader changes associated with the post-World War II ‘Great Acceleration’ in industrial capacity and consumption. Our findings provide a precisely-resolved potential Global Stratotype Section and Point (GSSP) or ‘golden spike’, marking the onset of the Anthropocene Epoch.
More details from the publisher
Details from ORA
More details
More details

Radiocarbon Constraints on the Age of the World’s Highest-Elevation Cave-Bear Population, Conturines Cave (Dolomites, Northern Italy)

Radiocarbon Cambridge University Press (CUP) 60:1 (2018) 299-307

Authors:

Christoph Spötl, Paula J Reimer, Gernot Rabeder, Christopher Bronk Ramsey

Abstract:

AbstractWe report radiocarbon (14C) dates on bone samples of Ursus ladinicus, a small cave bear species well adapted to a life in the mountains, whose remains were found in Conturines Cave. Located at 2775 m asl in the Dolomites of northern Italy, this cave is by far the highest known cave bear site worldwide. Eleven 14C dates obtained by the Belfast and Oxford laboratories on samples showing good collagen preservation yielded consistent ages in excess of 46–50 ka BP. These results show that contrary to the previously held view these cave bear remains are older than Marine Isotope Stage 3, and likely date from a warm climate period with a high treeline, possibly the Last Interglacial.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Current page 20
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet