Ultra-distal fine ash occurrences of the Icelandic Askja-S Plinian eruption deposits in Southern Carpathian lakes: New age constraints on a continental scale tephrostratigraphic marker
Quaternary Science Reviews Elsevier 188 (2018) 174-182
Abstract:
Here we present the results of the first cryptotephra investigation of two Late glacial-Holocene lake records from the Southern Carpathian Mountains in Romania, Lake Brazi and Lake Lia. The discovery of an important Icelandic tephrostratigraphic marker, the Askja-S, in the sedimentary records of both sites significantly extends the known ash dispersal from this Plinian eruption. Bayesian age-depth modelling of available radiocarbon (14C) data from both sedimentary records allows us to further refine the depositional age of this ultra-distal tephra. In combination with age constraints on the tephra from other well-dated European sites, we produce an updated age for this key tephrostratigraphic marker of 10,824 ± 97 cal yrs BP (95.4% range). The Askja-S tephra is stratigraphically positioned after the palaeoenvironmental proxy response to the Preboreal Oscillation at both sites. The widespread distribution of this tephra across Europe offers the potential to assess spatio-temporal variability of this climatic signal. The discovery of the Askja-S in lake records from the Southern Carpathians highlights the likelihood of finding other ultra-distal (Icelandic) cryptotephra marker layers within the region. Additionally, given the location of the Carpathian region, it offers the opportunity to further enhance and integrate tephrostratigraphic frameworks of north-western Europe with those of the Mediterranean and Anatolia regions, which will enable a more precise comparison of palaeoenvironmental archives across Europe.The worldwide marine radiocarbon reservoir effect: Definitions, mechanisms and prospects
Reviews of Geophysics American Geophysical Union 56:1 (2018) 278-305
Abstract:
When a carbon reservoir has a lower content of radiocarbon relative to the atmosphere, this is referred to as a reservoir effect. This is expressed as an offset between the radiocarbon ages of samples from the two reservoirs at a single point in time. The marine reservoir effect (MRE) has been a major concern in the radiocarbon community, as it introduces an additional source of error that is often difficult to accurately quantify. For this reason, researchers are often reluctant to date marine material where they have another option. The influence of this phenomenon makes the study of the MRE important for a broad range of applications. The advent of Accelerator Mass Spectrometry (AMS) has reduced sample size requirements and increased measurement precision, in turn increasing the number of studies seeking to measure marine samples. These studies rely on overcoming the influence of the MRE on marine radiocarbon dates through the worldwide quantification of the local parameter ΔR, i.e. the local variation from the global average MRE. Furthermore, the strong dependence on ocean dynamics makes the MRE a useful indicator for changes in oceanic circulation, carbon exchange between reservoirs and the fate of atmospheric CO2, as well as their impact on Earth's climate. This article explores data from the Marine Reservoir Database and reviews the place of natural radiocarbon in oceanic records, focusing on key questions (e.g., changes in ocean dynamics) that have been answered by MRE studies and on their application to different subjects.Global peak in atmospheric radiocarbon provides a potential definition for the onset of the anthropocene epoch in 1965
Scientific Reports Springer Nature 8 (2018) 3293
Abstract:
Anthropogenic activity is now recognised as having profoundly and permanently altered the Earth system, suggesting we have entered a human-dominated geological epoch, the ‘Anthropocene’. To formally define the onset of the Anthropocene, a synchronous global signature within geological-forming materials is required. Here we report a series of precisely-dated tree-ring records from Campbell Island (Southern Ocean) that capture peak atmospheric radiocarbon (14C) resulting from Northern Hemisphere-dominated thermonuclear bomb tests during the 1950s and 1960s. The only alien tree on the island, a Sitka spruce (Picea sitchensis), allows us to seasonally-resolve Southern Hemisphere atmospheric 14C, demonstrating the ‘bomb peak’ in this remote and pristine location occurred in the last-quarter of 1965 (October-December), coincident with the broader changes associated with the post-World War II ‘Great Acceleration’ in industrial capacity and consumption. Our findings provide a precisely-resolved potential Global Stratotype Section and Point (GSSP) or ‘golden spike’, marking the onset of the Anthropocene Epoch.Radiocarbon Constraints on the Age of the World’s Highest-Elevation Cave-Bear Population, Conturines Cave (Dolomites, Northern Italy)
Radiocarbon Cambridge University Press (CUP) 60:1 (2018) 299-307
Abstract:
Testing the Effectiveness of Protocols for Removal of Common Conservation Treatments for Radiocarbon Dating
Radiocarbon Cambridge University Press (CUP) 60:1 (2018) 35-50