Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Christopher Ramsey

Professor of Archaeological Science

Research theme

  • Accelerator physics
  • Climate physics
  • Instrumentation

Sub department

  • Atomic and Laser Physics
christopher.ramsey@physics.ox.ac.uk
Telephone: 01865285215
School of Archaeology
  • About
  • Publications

An extended and revised Lake Suigetsu varve chronology from similar to 50 to similar to 10 ka BP based on detailed sediment micro-facies analyses

QUATERNARY SCIENCE REVIEWS 200 (2018) 351-366
More details from the publisher
More details

Lives before and after Stonehenge: An osteobiographical study of four prehistoric burials recently excavated from the Stonehenge World Heritage Site

Journal of Archaeological Science: Reports 20 (2018) 692-710

Abstract:

© 2018 The Authors Osteobiographies of four individuals whose skeletal remains were recovered in 2015–16 from the Stonehenge World Heritage Site are constructed, drawing upon evidence from funerary taphonomy, radiocarbon dating, osteological study, stable isotope analyses, and microscopic and biomolecular analyses of dental calculus. The burials comprise an adult from the Middle Neolithic period, immediately prior to the building of Stonehenge, and two adults and a perinatal infant dating from the Middle Bronze Age, shortly after the monument ceased to be structurally modified. The two Middle Bronze Age adults were closely contemporary, but differed from one another in ancestry, appearance and geographic origin (key components of ethnicity). They were nevertheless buried in very similar ways. This suggests that aspects they held in common (osteological analysis suggests perhaps a highly mobile lifestyle) were more important in determining the manner of deposition of their bodies than any differences between them in ethnicity. One of these individuals probably came from outside Britain, as perhaps did the Middle Neolithic adult. This would be consistent with the idea that the Stonehenge landscape had begun to draw people to it from beyond Britain before Stonehenge was constructed and that it continued to do so after structural modification to the monument had ceased.
More details from the publisher
More details

Re-dating Zhoukoudian Upper Cave, northern China and its regional significance

Journal of Human Evolution Elsevier 121 (2018) 170-177

Authors:

Feng Li, Christopher J Bae, Christopher B Ramsey, Fuyou Chen, Xing Gao
More details from the publisher
More details
More details
More details

Seasonal variations in the 14C content of tree rings: influences on radiocarbon calibration and single-year curve construction

Radiocarbon Cambridge University Press 61:1 (2018) 185-194

Authors:

Liam McDonald, David Chivall, Daniel Miles, Christopher Ramsey

Abstract:

To examine the implications of seasonality for the construction of a single-year calibration curve we obtained separate dates on earlywood and latewood fractions of tree rings originating from England and dendrochronologically dated between AD 1352 and AD 1442. These demonstrated that an average difference of 26±15 yr exists between earlywood and latewood and that this difference can be as high as 33±19 yr during periods of high radiocarbon (14C) production. It is argued that this difference is due to both changes in atmospheric 14C and the incorporation of stored carbohydrates into earlywood. Based on this, it was possible to separate an atmospheric and physiological contribution to this difference. Our modeling indicates that storage can produce a difference of up to 10 years between earlywood and latewood. This suggests that full-year tree rings from deciduous trees may be less appropriate for the construction of a single-year calibration curve and that specific atmospheric events can be more easily detected by measuring only latewood.
More details from the publisher
Details from ORA
More details

Using δ 2 H in human bone collagen to correct for freshwater 14 C reservoir offsets: a pilot study from Shamanka II, Lake Baikal, southern Siberia

Radiocarbon Cambridge University Press 60:5 (2018) 1521-1532

Authors:

Rick Schulting, C Snoeck, I Begley, S Brookes, VI Bazaliiskii, Christopher Bronk Ramsey, A Weber

Abstract:

There is increasing awareness of the need to correct for freshwater as well as marine reservoir effects when undertaking radiocarbon (14C) dating of human remains. Here, we explore the use of stable hydrogen isotopes (δ2H), alongside the more commonly used stable carbon (δ13C) and nitrogen isotopes (δ15N), for correcting 14C freshwater reservoir offsets in 10 paired human-faunal dates from graves at the prehistoric cemetery of Shamanka II, Lake Baikal, southern Siberia. Excluding one individual showing no offset, the average human-faunal offset was 515±175 14C yr. Linear regression models demonstrate a strong positive correlation between δ15N and δ2H ratios, supporting the use of δ2H as a proxy for trophic level. Both isotopes show moderate but significant correlations (r2 ~ 0.45, p < 0.05) with 14C offsets (while δ13C on its own does not), though δ2H performs marginally better. A regression model using all three stable isotopes to predict 14C offsets accounts for approximately 65% of the variation in the latter (r2=0.651, p=0.025), with both δ13C and δ2H, but not δ15N, contributing significantly. The results suggest that δ2H may be a useful proxy for freshwater reservoir corrections, though further work is needed.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Current page 20
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet