14C record and wiggle-match placement for the Anatolian (Gordion Area) juniper tree-ring chronology ~1729 TO 751 CAL BC, and typical Aegean/Anatolian (growing season related) regional 14C offset assessment
Radiocarbon 52:4 (2010) 1571-1597
Abstract:
The East Mediterranean Radiocarbon (inter-)Comparison Project (EMRCP) has measured the 14C ages of a number of sets of tree rings from the Gordion Area dendrochronology from central Anatolia at the Heidelberg Radiocarbon Laboratory. In several cases, multiple measurements were made over a period from the 1980s to 2009. This paper presents the final data set from this work (128 high-precision measurements), and considers (i) the relationship of these data against the standard Northern Hemisphere 14C calibration data set (IntCal09), and (ii) the optimum calendar dating of this floating treering record on the basis of the final set of high-precision 14C data. It finds good agreement between the Anatolian data and IntCal09 in some important intervals (e.g. ~1729 to 1350 cal BC) and observes one period (9th-8th centuries BC) where there appears to be some indication of a regional/growing season signal, and another period (later 14th-13th centuries BC) where IntCal09 may not best reflect the real 14C record. The scale of the typical growing-season-related regional 14C offset (ΔR) between the Aegean/Anatolian region and IntCal09 is also assessed (for the mid-2nd millennium BC and mid-2nd millennium AD), and found to be usually minor (at times where there are no major additional forcing factors and/or issues with the IntCal09 data set): of the order of 2-4 ± 2-4 yr. © 2010 by the Arizona Board of Regents on behalf of the University of Arizona.A response to Finkelstein and Piasetzky's criticism and "new perspective"
Radiocarbon 52:4 (2010) 1681-1688
Abstract:
The following short paper is a response to criticism by Finkelstein and Piasetzky (2010b), published in the present issue of Radiocarbon, of our 2008 paper in Radiocarbon concerning the evaluation of 14C dates from Iron Age levels in Israel published by Boaretto et al. (2005). We refer to criticism concerning exclusion and inclusion of data. We also evaluate new models suggested by Finkelstein and Piasetzky and in particular their suggestion of regional stages marking the end of the Iron Age in Israel. We also comment on several methodological issues. © 2010 by the Arizona Board of Regents on behalf of the University of Arizona.Current pretreatment methods for ams radiocarbon dating at the oxford radiocarbon accelerator unit (orau)
Radiocarbon 52:1 (2010) 103-112
Abstract:
In this paper, we summarize the main chemical pretreatment protocols currently used for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit, updating the protocols last described by Hedges et al. (1989). © 2010 by the Arizona Board of Regents on behalf of the University of Arizona.Developments in the calibration and modeling of radiocarbon dates
Radiocarbon University of Arizona 52:3 (2010) 953-961
Abstract:
Calibration is a core element of radiocarbon dating and is undergoing rapid development on a number of different fronts. This is most obvious in the area of 14C archives suitable for calibration purposes, which are now demonstrating much greater coherence over the earlier age range of the technique. Of particular significance to this end is the development of purely terrestrial archives such as those from the Lake Suigetsu sedimentary profile and Kauri tree rings from New Zealand, in addition to the groundwater records from speleothems. Equally important, however, is the development of statistical tools that can be used with, and help develop, such calibration data. In the context of sedimentary deposition, age-depth modeling provides a very useful way to analyze series of measurements from cores, with or without the presence of additional varve information. New methods are under development, making use of model averaging, that generate more robust age models. In addition, all calibration requires a coherent approach to outliers, for both single samples and where entire data sets might be offset relative to the calibration curve. This paper looks at current developments in these areas.Investigating the likelihood of a reservoir offset in the radiocarbon record for ancient Egypt
Journal of Archaeological Science 37:4 (2010) 687-693