IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50,000 Years cal BP
Radiocarbon Cambridge University Press (CUP) 51:4 (2009) 1111-1150
Abstract:
Optically stimulated luminescence dating of single and multiple grains of quartz from perennially frozen loess in western Yukon Territory, Canada: Comparison with radiocarbon chronologies for the late Pleistocene Dawson tephra
Quaternary Geochronology 3:4 (2008) 346-364
Abstract:
Optically stimulated luminescence (OSL) dating of perennially frozen loess was tested on quartz grains extracted from deposits associated with the late Pleistocene Dawson tephra in western Yukon Territory, Canada. OSL samples were obtained from ice-rich loess bracketing the Dawson tephra, while radiocarbon (14C) samples were collected from the bulk sediments directly underlying the tephra and from a ground-squirrel burrow 2.7 m below the tephra. Here we report the OSL characteristics and ages of the extracted quartz grains, as well as additional radiocarbon ages for samples described in Froese [2002. Age and significance of the late Pleistocene Dawson tephra in eastern Beringia. Quaternary Science Reviews 21, 2137-2142; 2006. Seasonality of the late Pleistocene Dawson tephra and exceptional preservation of a buried riparian surface in central Yukon Territory, Canada. Quaternary Science Reviews 25, 1542-1551]. We refine the time of Dawson tephra deposition to between 25,420±70 and 25,290±80 14C a BP. Bayesian analysis of constraining radiocarbon ages places the deposition of the Dawson tephra at between 30,433 and 30,032 cal a BP. Linear modulation (LM) OSL analysis of multi-grain aliquots of quartz showed that the initial part of the decay curve is dominated by a rapidly bleached ('fast') component; these samples, however, had relatively dim continuous wave (CW) OSL signals at the multi-grain aliquot (each composed of ∼80 grains) and single-grain scales of analysis. The single-aliquot regenerative-dose protocol was applied to multi-grain aliquots and single grains to obtain equivalent dose (De) values for samples collected from below and above the Dawson tephra. The De values were examined graphically and numerically, the latter using the central age, minimum age, and finite mixture models. For multi-grain aliquots, the central age model gave weighted mean De values between 30 and 50 Gy, which greatly underestimated the expected De of ∼74-81 Gy for both samples studied. Possible reasons for these underestimations are discussed, and a solution proposed based on single-grain analysis. Measurements of single grains produced De values in agreement with the expected De, and yielded OSL ages of 28±5 and 30±4 ka for the samples taken from above and below the Dawson tephra, respectively. Examination of individual grains with differing luminescence behaviors showed that a significant number of the measured quartz grains exhibited anomalous luminescence properties that would have compromised the results obtained from multi-grain aliquots. We therefore recommend analysis of individual grains to overcome the age-shortfall from multi-grain analysis of these and similar samples of quartz. © 2007 Elsevier Ltd. All rights reserved.The Middle to Upper Paleolithic transition: dating, stratigraphy, and isochronous markers
Journal of Human Evolution Elsevier BV 55:5 (2008) 764-771
High-precision radiocarbon dating and historical biblical archaeology in southern Jordan
Proceedings of the National Academy of Sciences of the United States of America 105:43 (2008) 16460-16465
Abstract:
Recent excavations and high-precision radiocarbon dating from the largest Iron Age (IA, ca. 1200-500 BCE) copper production center in the southern Levant demonstrate major smelting activities in the region of biblical Edom (southern Jordan) during the 10th and 9th centuries BCE. Stratified radiocarbon samples and artifacts were recorded with precise digital surveying tools linked to a geographic information system developed to control on-site spatial analyses of archaeological finds and model data with innovative visualization tools. The new radiocarbon dates push back by 2 centuries the accepted IA chronology of Edom. Data from Khirbat en-Nahas, and the nearby site of Rujm Hamra Ifdan, demonstrate the centrality of industrial-scale metal production during those centuries traditionally linked closely to political events in Edom's 10th century BCE neighbor ancient Israel. Consequently, the rise of IA Edom is linked to the power vacuum created by the collapse of Late Bronze Age (LB, ca. 1300 BCE) civilizations and the disintegration of the LB Cypriot copper monopoly that dominated the eastern Mediterranean. The methodologies applied to the historical IA archaeology of the Levant have implications for other parts of the world where sacred and historical texts interface with the material record. © 2008 by The National Academy of Sciences of the USA.Improved age modelling and high-precision age estimates of late Quaternary tephras, for accurate palaeoclimate reconstruction
Journal of Volcanology and Geothermal Research 177:1 (2008) 251-262