A re-analysis of the Lake Suigetsu terrestrial radiocarbon calibration dataset
Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 268:7-8 (2010) 960-965
Abstract:
Lake Suigetsu, Honshu Island, Japan provides an ideal sedimentary sequence from which to derive a wholly terrestrial radiocarbon calibration curve back to the limits of radiocarbon detection (circa 60 ka bp). The presence of well-defined, annually-deposited laminae (varves) throughout the entirety of this period provides an independent, high resolution chronometer against which radiocarbon measurements of plant macrofossils from the sediment column can be directly related. However, data from the initial Lake Suigetsu project [1-3] were found to diverge significantly from alternative, marine-based calibration datasets released around the same time (e.g. [4,5]). The main source of this divergence is thought to be the result of inaccuracies in the absolute age profile of the Suigetsu project, caused by both varve counting uncertainties and gaps in the sediment column of unknown duration between successively-drilled core sections. Here, a re-analysis of the previously-published Lake Suigetsu data is conducted. The most recent developments in Bayesian statistical modelling techniques (OxCal v4.1; [6]) are implemented to fit the Suigetsu data to the latest radiocarbon calibration datasets and thereby estimate the duration of the inter-core section gaps in the Suigetsu data. In this way, the absolute age of the Lake Suigetsu sediment profile is more accurately defined, providing significant information for both radiocarbon calibration and palaeoenvironmental reconstruction purposes. © 2009 Elsevier B.V. All rights reserved.Ancient human genome sequence of an extinct Palaeo-Eskimo.
Nature 463:7282 (2010) 757-762
Abstract:
We report here the genome sequence of an ancient human. Obtained from approximately 4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20x, we recover 79% of the diploid genome, an amount close to the practical limit of current sequencing technologies. We identify 353,151 high-confidence single-nucleotide polymorphisms (SNPs), of which 6.8% have not been reported previously. We estimate raw read contamination to be no higher than 0.8%. We use functional SNP assessment to assign possible phenotypic characteristics of the individual that belonged to a culture whose location has yielded only trace human remains. We compare the high-confidence SNPs to those of contemporary populations to find the populations most closely related to the individual. This provides evidence for a migration from Siberia into the New World some 5,500 years ago, independent of that giving rise to the modern Native Americans and Inuit.14C record and wiggle-match placement for the Anatolian (Gordion Area) juniper tree-ring chronology ~1729 TO 751 CAL BC, and typical Aegean/Anatolian (growing season related) regional 14C offset assessment
Radiocarbon 52:4 (2010) 1571-1597
Abstract:
The East Mediterranean Radiocarbon (inter-)Comparison Project (EMRCP) has measured the 14C ages of a number of sets of tree rings from the Gordion Area dendrochronology from central Anatolia at the Heidelberg Radiocarbon Laboratory. In several cases, multiple measurements were made over a period from the 1980s to 2009. This paper presents the final data set from this work (128 high-precision measurements), and considers (i) the relationship of these data against the standard Northern Hemisphere 14C calibration data set (IntCal09), and (ii) the optimum calendar dating of this floating treering record on the basis of the final set of high-precision 14C data. It finds good agreement between the Anatolian data and IntCal09 in some important intervals (e.g. ~1729 to 1350 cal BC) and observes one period (9th-8th centuries BC) where there appears to be some indication of a regional/growing season signal, and another period (later 14th-13th centuries BC) where IntCal09 may not best reflect the real 14C record. The scale of the typical growing-season-related regional 14C offset (ΔR) between the Aegean/Anatolian region and IntCal09 is also assessed (for the mid-2nd millennium BC and mid-2nd millennium AD), and found to be usually minor (at times where there are no major additional forcing factors and/or issues with the IntCal09 data set): of the order of 2-4 ± 2-4 yr. © 2010 by the Arizona Board of Regents on behalf of the University of Arizona.A response to Finkelstein and Piasetzky's criticism and "new perspective"
Radiocarbon 52:4 (2010) 1681-1688
Abstract:
The following short paper is a response to criticism by Finkelstein and Piasetzky (2010b), published in the present issue of Radiocarbon, of our 2008 paper in Radiocarbon concerning the evaluation of 14C dates from Iron Age levels in Israel published by Boaretto et al. (2005). We refer to criticism concerning exclusion and inclusion of data. We also evaluate new models suggested by Finkelstein and Piasetzky and in particular their suggestion of regional stages marking the end of the Iron Age in Israel. We also comment on several methodological issues. © 2010 by the Arizona Board of Regents on behalf of the University of Arizona.Current pretreatment methods for ams radiocarbon dating at the oxford radiocarbon accelerator unit (orau)
Radiocarbon 52:1 (2010) 103-112