Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Christopher Ramsey

Professor of Archaeological Science

Research theme

  • Accelerator physics
  • Climate physics
  • Instrumentation

Sub department

  • Atomic and Laser Physics
christopher.ramsey@physics.ox.ac.uk
Telephone: 01865285215
School of Archaeology
  • About
  • Publications

Imaging of radiocarbon-labelled tracer molecules in neural tissue using accelerator mass spectroscopy (vol 383, pg 823, 1996)

NATURE 390:6657 (1997) 315-315

Authors:

REM Hedges, ZX Jiang, CB Ramsey, A Cowey, JDB Roberts, P Somogyi
More details from the publisher

Methodological Issues in the 14C Dating of Rock Paintings

Radiocarbon Cambridge University Press (CUP) 40:1 (1997) 35-44

Authors:

REM Hedges, Christopher Bronk Ramsey, GJ Van Klinken, PB Pettitt, Christina Nielsen-Marsh, Alberto Etchegoyen, JO Fernandez Niello, MT Boschin, AM Llamazares

Abstract:

Chemical and isotopic analyses have been made of pigment samples from two separate rock art sites in Argentina. The purpose of the study has been to establish the feasibility of extracting carbonaceous material from the samples which will permit reliable radiocarbon dates for the time of painting. The two sites, Catamarca and Rio Negro, present quite different problems. Most of the paper is concerned with Catamarca, and here we have shown that the paint pigments contain very little or no organic binder; but they do contain calcium oxalate derived from local cacti, and calcium carbonate derived probably from local plant ash. We describe a method to purify carbon extracted from the calcium oxalate, and present the dates obtained on both components. We show that, though rare, natural deposits containing both calcium oxalate and calcite do occur, but that they are very distinct in both 13C and 14C compositions; and we argue that they are very unlikely to contaminate the pigments to such an extent that the 14C dates are altered. For the Rio Negro site we show that the ground for the paint pigments contains carbon derived from fires burnt inside the cave, and discuss how analytical methods provide information to develop a strategy for extracting material, from both ground and pigment, for more reliable dating.
More details from the publisher
More details

Probability and Dating

Radiocarbon Cambridge University Press (CUP) 40:1 (1997) 461-474

Abstract:

Statistical analysis is becoming much more widely used in conjunction with radiocarbon dating. In this paper I discuss the impact of Bayesian analysis (using computer programs such as OxCal) on archaeological research. In addition to simple analysis, the method has implications for the planning of dating projects and the assessment of the reliability of dates in their context.A new formalism for describing chronological models is introduced here: the Chronological Query Language (CQL), an extension of the model definitions found in the program OxCal.New methods of Bayesian analysis can be used to overcome some of the inherent biases in the uncertainty estimates of scientific dating methods. Most of these methods, including 14C, uranium series and thermoluminescence (TL), tend to favor some calendar dates over others. 14C calibration overcomes the problem where this is possible, but a Bayesian approach can be used more generally.
More details from the publisher
More details

Imaging of radiocarbon-labelled tracer molecules in neural tissue using accelerator mass spectrometry.

Nature 383:6603 (1996) 823-826

Authors:

RE Hedges, ZX Jiang, CB Ramsey, A Cowey, JD Roberts, P Somogyi

Abstract:

Autoradiography is widely and successfully used to image the distribution of radiolabelled tracer molecules in biological samples. The method is, however, limited in resolution and sensitivity, especially for 14C. Here we describe a new method for imaging 14C-labelled tracers in sections of biological tissue. A highly focused beam of gallium ions bombards the tissue, which is eroded (sputtered) into constituent atoms, molecules and secondary ions. The 14C ions are detected in the secondary beam by the most sensitive method available, namely accelerator mass spectrometry. The specimen is scanned pixel by pixel (1 x 2 microm), generating an image in a manner analogous to scanning electron microscopy. The method can thus be regarded as a specialized form of scanning secondary ion mass spectrometry (SIMS), referred to here as SIAMS (ref. 2). We have used SIAMS to localize the neurotransmitter gamma-aminobutyric acid (GABA) in thin sections of cerebral cortex, and show that it can generate 14C images that are much improved on 14C autoradiography. A scan takes 10-20 min and reveals individual axons, neurons and glial cells at high sensitivity. In principle, the resolution could be increased by up to tenfold, and the method could be extended to some other nuclides.
More details from the publisher
More details
More details

RADIOCARBON DATES FROM THE OXFORD AMS SYSTEM: ARCHAEOMETRY DATELIST 22

Archaeometry Wiley 38:2 (1996) 391-415

Authors:

REM HEDGES, PB PETTITT, C BRONK RAMSEY, GJ VAN KLINKEN
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 68
  • Page 69
  • Page 70
  • Page 71
  • Current page 72
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet