Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Image of Jupiter's Great Red Spot from Voyager 1

Image of Jupiter's Great Red Spot, obtained during the fly-by of Jupiter by NASA's Voyager 1 spacecraft in 1979.

Credit: NASA/JPL

Prof. Peter Read

Emeritus/researcher

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Geophysical and Astrophysical Fluid Dynamics
  • Planetary Climate Dynamics
Peter.Read@physics.ox.ac.uk
Telephone: 01865 (2)72082
Atmospheric Physics Clarendon Laboratory, room 210
  • About
  • Publications

Synchronization in a pair of thermally coupled rotating baroclinic annuli: understanding atmospheric teleconnections in the laboratory.

Phys Rev Lett 104:20 (2010) 204501

Authors:

AA Castrejón-Pita, PL Read

Abstract:

Synchronization phenomena in a fluid dynamical analogue of atmospheric circulation is studied experimentally by investigating the dynamics of a pair of thermally coupled, rotating baroclinic annulus systems. The coupling between the systems is in the well-known master-slave configuration in both periodic and chaotic regimes. Synchronization tools such as phase dynamics analysis are used to study the dynamics of the coupled system and demonstrate phase synchronization and imperfect phase synchronization, depending upon the coupling strength and parameter mismatch.
More details from the publisher
More details

A laboratory model of Saturn's North Polar Hexagon

Icarus 206:2 (2010) 755-763

Authors:

AC Barbosa Aguiar, PL Read, RD Wordsworth, T Salter, Y Hiro Yamazaki

Abstract:

A hexagonal structure has been observed at ∼76°N on Saturn since the 1980s (Godfrey, D.A. [1988]. Icarus 76, 335-356). Recent images by Cassini (Baines, K., Momary, T., Roos-Serote, M., Atreya, S., Brown, R., Buratti, B., Clark, R., Nicholson, P. [2007]. Geophys. Res. Abstr. 9, 02109; Baines, K., Momary, T., Fletcher, L., Kim, J., Showman, A., Atreya, S., Brown, R., Buratti, B., Clark, R., Nicholson, P. [2009]. Geophys. Res. Abstr. 11, 3375) have shown that the feature is still visible and largely unchanged. Its long lifespan and geometry has puzzled the planetary physics community for many years and its origin remains unclear. The measured rotation rate of the hexagon may be very close to that of the interior of the planet (Godfrey, D.A. [1990]. Science 247, 1206-1208; Caldwell, J., Hua, X., Turgeon, B., Westphal, J.A., Barnet, C.D. [1993]. Science 206, 326-329; Sánchez-Lavega, A., Lecacheux, J., Colas, F., Laques, P. [1993]. Science 260, 329-332), leading to earlier interpretations of the pattern as a stationary planetary wave, continuously forced by a nearby vortex (Allison, M., Godfrey, D.A., Beebe, R.F. [1990]. Science 247, 1061-1063). Here we present an alternative explanation, based on an analysis of both spacecraft observations of Saturn and observations from laboratory experiments where the instability of quasi-geostrophic barotropic (vertically uniform) jets and shear layers is studied. We also present results from a barotropic linear instability analysis of the saturnian zonal wind profile, which are consistent with the presence of the hexagon in the North Pole and absence of its counter-part in the South Pole. We propose that Saturn's long-lived polygonal structures correspond to wavemodes caused by the nonlinear equilibration of barotropically unstable zonal jets. © 2009 Elsevier Inc. All rights reserved.
More details from the publisher
More details

Assessing eddy parameterization schemes in a differentially heated rotating annulus experiment

Ocean Modelling 32:3-4 (2010) 118-131

Authors:

E Pérez-Pérez, PL Read, IM Moroz

Abstract:

We investigate three of the most common hypotheses underpinning parameterizations of baroclinic eddy fluxes in the context of the differentially heated rotating annulus experiment. The investigation is carried out over a region of parameter space which embraces the onset of baroclinic instability, the regular wave regime and the onset of irregular flows, the latter of which is arguably most relevant to oceanic conditions. Through diagnostics from a 2D axisymmetric and a 3D eddy-resolving numerical model, it was found that the transport of heat by baroclinic eddies is not strictly an adiabatic process but that diffusive 'ventilation' of the flow in the thermal boundary layers is significant during the nonlinear development of the flow. Total heat transport, however, is conserved overall. Depending on the stages of flow evolution and on the region in parameter space under consideration, either heat, quasi-geostrophic potential vorticity (QGPV) or relative vorticity (QGRV) may become a suitable variable on which to parameterize baroclinic eddy fluxes in a down-gradient manner. These results raise issues for eddy parameterization schemes that rely on these assumptions in ocean and atmosphere models. © 2009 Elsevier Ltd.
More details from the publisher
More details

Saturn's emitted power

Journal of Geophysical Research: Planets 115:11 (2010)

Authors:

L Li, BJ Conrath, PJ Gierasch, RK Achterberg, CA Nixon, AA Simon-Miller, FM Flasar, D Banfield, KH Baines, RA West, AP Ingersoll, AR Vasavada, AD Del Genio, CC Porco, AA Mamoutkine, ME Segura, GL Bjoraker, GS Orton, LN Fletcher, PGJ Irwin, PL Read

Abstract:

Long-term (2004-2009) on-orbit observations by Cassini Composite Infrared Spectrometer are analyzed to precisely measure Saturn's emitted power and its meridional distribution. Our evaluations suggest that the average global emitted power is 4.952 ± 0.035 W m-2 during the period of 2004-2009. The corresponding effective temperature is 96.67 ± 0.17 K. The emitted power is 16.6% higher in the Southern Hemisphere than in the Northern Hemisphere. From 2005 to 2009, the global mean emitted power and effective temperature decreased by ∼2% and ∼0.5%, respectively. Our study further reveals the interannual variability of emitted power and effective temperature between the epoch of Voyager (∼1 Saturn year ago) and the current epoch of Cassini, suggesting changes in the cloud opacity from year to year on Saturn. The seasonal and interannual variability of emitted power implies that the energy balance and internal heat are also varying. Copyright © 2010 by the American Geophysical Union.
More details from the publisher
More details

Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols

Journal of Geophysical Research: Planets 115:12 (2010)

Authors:

DJ McCleese, NG Heavens, JT Schofield, WA Abdou, JL Bandfield, SB Calcutt, PGJ Irwin, DM Kass, A Kleinböhl, SR Lewis, DA Paige, PL Read, MI Richardson, JH Shirley, FW Taylor, N Teanby, RW Zurek

Abstract:

The first Martian year and a half of observations by the Mars Climate Sounder aboard the Mars Reconnaissance Orbiter has revealed new details of the thermal structure and distributions of dust and water ice in the atmosphere. The Martian atmosphere is shown in the observations by the Mars Climate Sounder to vary seasonally between two modes: a symmetrical equinoctial structure with middle atmosphere polar warming and a solstitial structure with an intense middle atmosphere polar warming overlying a deep winter polar vortex. The dust distribution, in particular, is more complex than appreciated before the advent of these high (∼5 km) vertical resolution observations, which extend from near the surface to above 80 km and yield 13 dayside and 13 nightside pole-to-pole cross sections each day. Among the new features noted is a persistent maximum in dust mass mixing ratio at 15-25 km above the surface (at least on the nightside) during northern spring and summer. The water ice distribution is very sensitive to the diurnal and seasonal variation of temperature and is a good tracer of the vertically propagating tide. Copyright 2010 by the American Geophysical Union.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • Current page 29
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet