Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Image of Jupiter's Great Red Spot from Voyager 1

Image of Jupiter's Great Red Spot, obtained during the fly-by of Jupiter by NASA's Voyager 1 spacecraft in 1979.

Credit: NASA/JPL

Prof. Peter Read

Emeritus/researcher

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Geophysical and Astrophysical Fluid Dynamics
  • Planetary Climate Dynamics
Peter.Read@physics.ox.ac.uk
Telephone: 01865 (2)72082
Atmospheric Physics Clarendon Laboratory, room 210
  • About
  • Publications

Titan's winter polar vortex structure revealed by chemical tracers

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS 113:E12 (2008) ARTN E12003

Authors:

NA Teanby, R de Kok, PGJ Irwin, S Osprey, S Vinatier, PJ Gierasch, PL Read, FM Flasar, BJ Conrath, RK Achterberg, B Bezard, CA Nixon, SB Calcutt
More details from the publisher

Turbulence, waves, and jets in a differentially heated rotating annulus experiment

PHYSICS OF FLUIDS 20:12 (2008) ARTN 126602

Authors:

RD Wordsworth, PL Read, YH Yamazaki
More details from the publisher

Dynamics of convectively driven banded jets in the laboratory

Journal of the Atmospheric Sciences 64:11 (2007) 4031-4052

Authors:

PL Read, J Sommeria, P D Williams, Y H Yamazaki
More details from the publisher

Dynamics of convectively driven banded jets in the laboratory

Journal of the Atmospheric Sciences 64:11 (2007) 4031-4052

Authors:

PL Read, YH Yamazaki, SR Lewis, PD Williams, R Wordsworth, K Miki-Yamazaki, J Sommeria, H Didelle

Abstract:

The banded organization of clouds and zonal winds in the atmospheres of the outer planets has long fascinated observers. Several recent studies in the theory and idealized modeling of geostrophic turbulence have suggested possible explanations for the emergence of such organized patterns, typically involving highly anisotropic exchanges of kinetic energy and vorticity within the dissipationless inertial ranges of turbulent flows dominated (at least at large scales) by ensembles of propagating Rossby waves. The results from an attempt to reproduce such conditions in the laboratory are presented here. Achievement of a distinct inertial range turns out to require an experiment on the largest feasible scale. Deep, rotating convection on small horizontal scales was induced by gently and continuously spraying dense, salty water onto the free surface of the 13-m-diameter cylindrical tank on the Coriolis platform in Grenoble, France. A "planetary vorticity gradient" or "β effect" was obtained by use of a conically sloping bottom and the whole tank rotated at angular speeds up to 0.15 rad s-1. Over a period of several hours, a highly barotropic, zonally banded large-scale flow pattern was seen to emerge with up to 5-6 narrow, alternating, zonally aligned jets across the tank, indicating the development of an anisotropic field of geostrophic turbulence. Using particle image velocimetry (PIV) techniques, zonal jets are shown to have arisen from nonlinear interactions between barotropic eddies on a scale comparable to either a Rhines or "frictional" wavelength, which scales roughly as (β/Urms) -1/2. This resulted in an anisotropic kinetic energy spectrum with a significantly steeper slope with wavenumber k for the zonal flow than for the nonzonal eddies, which largely follows the classical Kolmogorov k-5/3 inertial range. Potential vorticity fields show evidence of Rossby wave breaking and the presence of a "hyperstaircase" with radius, indicating instantaneous flows that are supercritical with respect to the Rayleigh-Kuo instability criterion and in a state of "barotropic adjustment." The implications of these results are discussed in light of zonal jets observed in planetary atmospheres and, most recently, in the terrestrial oceans. © 2007 American Meteorological Society.
More details from the publisher

Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions

Journal of Geophysical Research: Planets 112:5 (2007)

Authors:

DJ McCleese, JT Schofield, FW Taylor, SB Calcutt, MC Foote, DM Kass, CB Leovy, DA Paige, PL Read, RW Zurek

Abstract:

Against a backdrop of intensive exploration of the Martian surface environment, intehded to lead to human exploration, some aspects of the modern climate and the meteorology of Mars remain relatively unexplored. In particular, there is a need for detailed measurements of the vertical profiles of atmospheric temperature, water vapor, dust, and condensates to understand the intricately related processes upon which the surface conditions, and those encountered during descent by landers, depend. The most important of these missing data are accurate and extensive temperature measurements with high vertical resolution. The Mars Climate Sounder experiment on the 2005 Mars Reconnaissance Orbiter, described here, is the latest attempt to characterize the Martian atmosphere with the sort of coverage and precision achieved by terrestrial weather satellites. If successful, it is expected to lead to corresponding improvements in our understanding of meteorological phenomena and to enable improved general circulation models of the Martian atmosphere for climate studies on a range of timescales. Copyright 2007 by the American Geophysical Union.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • Current page 30
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet