Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
One of the substrate layouts for our organic solar cells
Credit: AFMD Group

Moritz Riede

Professor of Soft Functional Nanomaterials

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Advanced Functional Materials and Devices (AFMD) Group
moritz.riede@physics.ox.ac.uk
Telephone: 01865 (2)72377 (office),01865 (2)82095 (lab)
  • About
  • Research
  • Teaching
  • Publications

Highly efficient p-dopants in amorphous hosts

Organic Electronics 15:2 (2014) 365-371

Authors:

T Menke, D Ray, H Kleemann, MP Hein, K Leo, M Riede

Abstract:

We study the influence of the molecular energy levels on doped organic layers, using four different combinations of two amorphous hosts (MeO-TPD and BF-DPB) and two efficient p-dopants (F6-TCNNQ and C 60F36). Conductivity and Seebeck studies are performed in situ, varying the doping concentration over more than two orders of magnitude. Whereas trends of doping are in agreement with the hosts' energy levels, trends deviate from the expectation based on the dopants' energy levels. A lower limit for the mobility can be derived from conductivity data, which for samples of F6-TCNNQ increases with doping, even exceeding the measured OFET-mobility of intrinsic MeO-TPD. © 2013 Elsevier B.V. All rights reserved.
More details from the publisher
Details from ORA
More details

Electroabsorption studies of organic p-i-n solar cells: evaluating the built-in voltage

MRS Advances Springer Nature 1639:1 (2014) 701

Authors:

Ellen Siebert-Henze, Vadim G Lyssenko, Robert Brückner, Moritz Riede, Karl Leo
More details from the publisher

Open-circuit voltage and effective gap of organic solar cells

Advanced Functional Materials 23:46 (2013) 5814-5821

Authors:

J Widmer, M Tietze, K Leo, M Riede

Abstract:

The open-circuit voltage (VOC) of an organic solar cell is limited by the donor-acceptor material system. The effective gap E geff between the electron affinity of the acceptor and the ionization potential of the donor is usually regarded as the upper limit for VOC, which is only reached for T → 0 K. This relation is confirmed for a number of small-molecule bulk heterojunction p-i-n type solar cells by varying the temperature and illumination intensity. With high precision, the low temperature limit of VOC is identical to E geff. Furthermore, the influence of the hole transport material in a p-doped hole transport layer and the donor-acceptor mixing ratio on this limit V0 is found to be negligible. Varying the active material system, the quantitative relation between V0 and E geff is found to be identity. A comparison of V 0 in a series of nine different donor-acceptor material combinations opens a pathway to quantitatively determine the ionization potential of a donor material or the electron affinity of an acceptor material. The effective gap of a photovoltaic donor-acceptor system equals the open-circuit voltage extrapolated to temperature zero. The extrapolation is independent of the illumination intensity, and material variations in the doped transport layers do not affect the measurement result. This is shown for bulk-heterojunction devices with different mixing ratios and with small-molecular materials from various classes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
More details from the publisher
Details from ORA

Temperature dependent behavior of flat and bulk heterojunction organic solar cells

Materials Research Society Symposium Proceedings 1493 (2013) 269-273

Authors:

J Widmer, K Leo, M Riede

Abstract:

The open-circuit voltage of an organic solar cell is increasing with decreasing temperature and with increasing illumination intensity. These dependencies are quantitatively investigated for two types of organic solar cells, one with a flat donor-acceptor heterojunction and one with a mixed layer bulk heterojunction. Zinc-phthalocyanine and C60 are used as donor and acceptor, respectively. A qualitative difference is found for the two geometries. We find that a logarithmic illumination intensity dependence with temperature as a linear pre-factor of the logarithm, which is commonly reported and observed, is applicable for the bulk heterojunction. The flat heterojunction, in contrast, shows a constant illumination intensity pre-factor which is independent of the temperature, and the temperature can be modeled as additional linear summand. © 2013 Materials Research Society.
More details from the publisher

Efficient charge generation by relaxed charge-transfer states at organic interfaces

Nature Materials (2013)

Authors:

K Vandewal, ET Hoke, WR Mateker, JT Bloking, GF Burkhard, MD McGehee, A Salleo, S Albrecht, M Schubert, D Neher, KR Graham, A Sellinger, A Amassian, J Widmer, JD Douglas, JMJ Fréchet, MK Riede

Abstract:

Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Current page 21
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet