Electroabsorption studies of organic p-i-n solar cells: Increase of the built-in voltage by higher doping concentration in the hole transport layer
Organic Electronics 15:2 (2014) 563-568
Abstract:
The built-in voltage in solar cells has a significant influence on the extraction of photogenerated charge carriers. For small molecule organic solar cells based on the p-i-n structure, we investigate the dependence of the built-in voltage on the work function of both the hole transport layer and the electrode material. The model system investigated here consists of a planar heterojunction with N,N,N′,N′-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD) as donor and Buckminster Fullerene (C60) as acceptor material. A higher concentration of the dopant C60F36 in the hole transport layer induces a shift of the work function towards the transport level. The resulting increase of the built-in voltage is studied using electroabsorption spectroscopy, measuring the change in absorption (Stark effect) caused by an externally applied electric field. An evaluation of these electroabsorption spectra as a function of the applied DC voltage enables the direct measurement of the built-in voltage. It is also shown that an increased built-in voltage does lead to a larger short-circuit current as well as a larger fill factor. © 2013 Elsevier B.V. All rights reserved.Highly efficient p-dopants in amorphous hosts
Organic Electronics 15:2 (2014) 365-371
Abstract:
We study the influence of the molecular energy levels on doped organic layers, using four different combinations of two amorphous hosts (MeO-TPD and BF-DPB) and two efficient p-dopants (F6-TCNNQ and C 60F36). Conductivity and Seebeck studies are performed in situ, varying the doping concentration over more than two orders of magnitude. Whereas trends of doping are in agreement with the hosts' energy levels, trends deviate from the expectation based on the dopants' energy levels. A lower limit for the mobility can be derived from conductivity data, which for samples of F6-TCNNQ increases with doping, even exceeding the measured OFET-mobility of intrinsic MeO-TPD. © 2013 Elsevier B.V. All rights reserved.Electroabsorption studies of organic p-i-n solar cells: evaluating the built-in voltage
MRS Advances Springer Nature 1639:1 (2014) 701
Open-circuit voltage and effective gap of organic solar cells
Advanced Functional Materials 23:46 (2013) 5814-5821
Abstract:
The open-circuit voltage (VOC) of an organic solar cell is limited by the donor-acceptor material system. The effective gap E geff between the electron affinity of the acceptor and the ionization potential of the donor is usually regarded as the upper limit for VOC, which is only reached for T → 0 K. This relation is confirmed for a number of small-molecule bulk heterojunction p-i-n type solar cells by varying the temperature and illumination intensity. With high precision, the low temperature limit of VOC is identical to E geff. Furthermore, the influence of the hole transport material in a p-doped hole transport layer and the donor-acceptor mixing ratio on this limit V0 is found to be negligible. Varying the active material system, the quantitative relation between V0 and E geff is found to be identity. A comparison of V 0 in a series of nine different donor-acceptor material combinations opens a pathway to quantitatively determine the ionization potential of a donor material or the electron affinity of an acceptor material. The effective gap of a photovoltaic donor-acceptor system equals the open-circuit voltage extrapolated to temperature zero. The extrapolation is independent of the illumination intensity, and material variations in the doped transport layers do not affect the measurement result. This is shown for bulk-heterojunction devices with different mixing ratios and with small-molecular materials from various classes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Temperature dependent behavior of flat and bulk heterojunction organic solar cells
Materials Research Society Symposium Proceedings 1493 (2013) 269-273