Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Professor Steven Rose

Visiting Professor

Research theme

  • Lasers and high energy density science

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
Steven.Rose@physics.ox.ac.uk
Imperial College London webpage
  • About
  • Publications

Energy transport in short-pulse-laser-heated targets measured using extreme ultraviolet laser backlighting.

Physical review. E, Statistical, nonlinear, and soft matter physics 86:2 Pt 2 (2012) 026406

Authors:

LA Wilson, GJ Tallents, J Pasley, DS Whittaker, SJ Rose, O Guilbaud, K Cassou, S Kazamias, S Daboussi, M Pittman, O Delmas, J Demailly, O Neveu, D Ros

Abstract:

The accurate characterization of thermal electron transport and the determination of heating by suprathermal electrons in laser driven solid targets are both issues of great importance to the current experiments being performed at the National Ignition Facility, which aims to achieve thermonuclear fusion ignition using lasers. Ionization, induced by electronic heat conduction, can cause the opacity of a material to drop significantly once bound-free photoionization is no longer energetically possible. We show that this drop in opacity enables measurements of the transmission of extreme ultraviolet (EUV) laser pulses at 13.9 nm to act as a signature of the heating of thin (50 nm) iron layers with a 50-nm thick parylene-N (CH) overlay irradiated by 35-fs pulses at irradiance 3×10(16) Wcm(-2). Comparing EUV transmission measurements at different times after irradiation to fluid code simulations shows that the target is instantaneously heated by hot electrons (with approximately 10% of the laser energy), followed by thermal conduction with a flux limiter of ≈0.05.
More details from the publisher
More details
More details

Controlling fast-electron-beam divergence using two laser pulses.

Physical review letters 109:1 (2012) 015001

Authors:

RHH Scott, C Beaucourt, H-P Schlenvoigt, K Markey, KL Lancaster, CP Ridgers, CM Brenner, J Pasley, RJ Gray, IO Musgrave, APL Robinson, K Li, MM Notley, JR Davies, SD Baton, JJ Santos, J-L Feugeas, Ph Nicolaï, G Malka, VT Tikhonchuk, P McKenna, D Neely, SJ Rose, PA Norreys

Abstract:

This Letter describes the first experimental demonstration of the guiding of a relativistic electron beam in a solid target using two colinear, relativistically intense, picosecond laser pulses. The first pulse creates a magnetic field that guides the higher-current, fast-electron beam generated by the second pulse. The effects of intensity ratio, delay, total energy, and intrinsic prepulse are examined. Thermal and Kα imaging show reduced emission size, increased peak emission, and increased total emission at delays of 4-6 ps, an intensity ratio of 10∶1 (second:first) and a total energy of 186 J. In comparison to a single, high-contrast shot, the inferred fast-electron divergence is reduced by 2.7 times, while the fast-electron current density is increased by a factor of 1.8. The enhancements are reproduced with modeling and are shown to be due to the self-generation of magnetic fields. Such a scheme could be of considerable benefit to fast-ignition inertial fusion.
More details from the publisher
More details
More details

A study of fast electron energy transport in relativistically intense laser-plasma interactions with large density scalelengths

Physics of Plasmas AIP Publishing 19:5 (2012) 053104

Authors:

RHH Scott, F Perez, JJ Santos, CP Ridgers, JR Davies, KL Lancaster, SD Baton, Ph Nicolai, RMGM Trines, AR Bell, S Hulin, M Tzoufras, SJ Rose, PA Norreys
More details from the publisher
More details

Gigabar material properties experiments on nif and omega

AIP Conference Proceedings AIP Publishing 1426:1 (2012) 477-480

Authors:

Damian Swift, James Hawreliak, David Braun, Andrea Kritcher, Siegfried Glenzer, GW Collins, Stephen Rothman, David Chapman, Steven Rose
More details from the publisher
More details

Testing quantum mechanics in non-Minkowski space-time with high power lasers and 4(th) generation light sources.

Scientific reports 2 (2012) 491

Authors:

BJB Crowley, R Bingham, RG Evans, DO Gericke, OL Landen, CD Murphy, PA Norreys, SJ Rose, Th Tschentscher, CH-T Wang, JS Wark, G Gregori

Abstract:

A common misperception of quantum gravity is that it requires accessing energies up to the Planck scale of 10¹⁹ GeV, which is unattainable from any conceivable particle collider. Thanks to the development of ultra-high intensity optical lasers, very large accelerations can be now the reached at their focal spot, thus mimicking, by virtue of the equivalence principle, a non Minkowski space-time. Here we derive a semiclassical extension of quantum mechanics that applies to different metrics, but under the assumption of weak gravity. We use our results to show that Thomson scattering of photons by uniformly accelerated electrons predicts an observable effect depending upon acceleration and local metric. In the laboratory frame, a broadening of the Thomson scattered x ray light from a fourth generation light source can be used to detect the modification of the metric associated to electrons accelerated in the field of a high power optical laser.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet