Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
MicroPL optical setup

Professor Robert Taylor

Emeritus Professor of Condensed Matter Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum Optoelectronics
Robert.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)72230
Clarendon Laboratory, room 164
orcid.org/0000-0003-2578-9645
  • About
  • Teaching
  • Positions available
  • Publications

Lasing in perovskite nanocrystals

Image of transverse modes from lasing nanocrystals
Nano Research, 14, 108, 2021

ENERGY RELAXATION IN p- AND n-GaAs QUANTUM WELLS: CONFINEMENT EFFECTS

Chapter in Hot Carriers in Semiconductors, Elsevier (1988) 459-462

Authors:

M Tatham, RA Taylor, JF Ryan, WI Wang, CT Foxon
More details from the publisher

ENERGY RELAXATION IN PARA-GAAS AND NORMAL-GAAS QUANTUM WELLS - CONFINEMENT EFFECTS

SOLID-STATE ELECTRONICS 31:3-4 (1988) 459-462

Authors:

M TATHAM, RA TAYLOR, JF RYAN, WI WANG, CT FOXON
More details from the publisher

Time-resolved exciton photoluminescence in gase and gate

Journal of Physics C: Solid State Physics 20:36 (1987) 6175-6187

Authors:

RA Taylor, JF Rayn

Abstract:

Time-resolved photoluminescence measurements of the layered semiconductors GaSe and GaTe have been made using a mode-locked dye laser a synchronously scanning streak camera. It is shown that at low excitation densities (1015-1017cm-3) exciton dynamics is dominated by trapping at defects. A rate equation model is developed that describes exciton formation, recombination and trapping. At 4K the authors determine free-exciton recombination times at 200 ps for GaTe and 350 ps for GaSe. Trapping times of 200 and 900 ps yield capture cross sections of 1.2*10-14cm2and 3.6*10-15cm2for GaTe and GaSe respectively. © 1987 IOP Publishing Ltd.
More details from the publisher

TIME-RESOLVED EXCITON PHOTOLUMINESCENCE IN GASE AND GATE

JOURNAL OF PHYSICS C-SOLID STATE PHYSICS 20:36 (1987) 6175-6187

Authors:

RA TAYLOR, JF RYAN
More details from the publisher

Time-resolved photoluminescence from hot two-dimensional carriers in GaAsGaAlAs MQWS

Surface Science 170:1-2 (1986) 511-519

Authors:

JF Ryan, RA Taylor, AJ Turberfield, JM Worlock

Abstract:

Picosecond time-resolved measurements of luminescence from hot carriers confined in GaAsGaAlAs multiple quantum wells show that energy loss rates are substantially slower than those predicted for 2D carriers. We review our recent experiments and present results for photoexcitation of (1) GaAs layers only, (2) both GaAs and GaAlAs layers. We compare the energy loss rates in samples with different well widths. Finally, we present measurements of hot 2D carrier relaxation in the presence of high magnetic fields; at low fields the energy loss rate is reduced, but for B > 9 T we observe a rapid increase. © 1986.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 90
  • Page 91
  • Page 92
  • Page 93
  • Current page 94
  • Page 95
  • Page 96
  • Page 97
  • Page 98
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet