Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof. Gavin Salam FRS

Royal Society Research Professor, Professor of Theoretical Physics and Senior Research Fellow at All Souls College

Research theme

  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
gavin.salam@physics.ox.ac.uk
Telephone: 01865 273976
Rudolf Peierls Centre for Theoretical Physics, room 70.25
  • About
  • Research
  • Prizes, awards and recognition
  • Publications

A posteriori inclusion of PDFs in NLO QCD final-state calculations: The APPLGRID Project

Proceedings of Science (2010)

Authors:

T Carli, D Clements, A Cooper-Sarkar, C Gwenlan, GP Salam, F Siegert, P Starovoitov, M Sutton

Abstract:

The calculation of cross-sections at Next-to-Leading order in QCD involves the integration over the final state phase space in order to cancel the infra-red divergences. For the calculation of cross sections for jet observables in deep-inelastic scattering or at hadron-hadron colliders this integration requires the Monte Carlo generation of a large number of event weights, and must be repeated for any calculation with a different choice of parton densities within the proton or different choice of factorisation or renormalisation scale. This makes the full calculation with many of the available parton density function error sets, or any iterative fit of the parton densities themselves, prohibitive in terms of the processing time required. A method for the a posteriori inclusion of the parton densities in the calculation is presented. In this method, the Monte Carlo weights from the integration over the hard-subprocess phase space are stored in a look-up table so that the full calculation need be performed only once, after which the cross section can be obtained with any parton density set by a fast convolution with the stored weights. A detailed example from inclusive jet production at the LHC is presented. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

Elements of QCD for hadron colliders

(2010)
More details from the publisher

Jet Reconstruction in Heavy Ion Collisions

(2010)

Authors:

Matteo Cacciari, Juan Rojo, Gavin P Salam, Gregory Soyez
More details from the publisher

A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project

Sissa Medialab Srl (2010) 051
More details from the publisher

Giant QCD K-factors beyond NLO

Journal of High Energy Physics Springer Nature 2010:9 (2010) 84

Authors:

Mathieu Rubin, Gavin P Salam, Sebastian Sapeta
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • Current page 32
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet