Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Subir Sarkar

Professor of Physics

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube Neutrino Observatory collaboration which discovered cosmic high energy neutrinos.

IceCube @ Oxford

A Test of the Cosmological Principle with Quasars

Letters of the Astrophysical Journal American Astronomical Society 908 (2021) L51-L51

Authors:

Nathan Secrest, Sebastian von Hausegger, Mohamed Rameez, Roya Mohayaee, Subir Sarkar, Jacques Colin

Abstract:

We study the large-scale anisotropy of the Universe by measuring the dipole in the angular distribution of a flux-limited, all-sky sample of 1.36 million quasars observed by the Wide-field Infrared Survey Explorer (WISE). This sample is derived from the new CatWISE2020 catalog, which contains deep photometric measurements at 3.4 and 4.6 $\mu$m from the cryogenic, post-cryogenic, and reactivation phases of the WISE mission. While the direction of the dipole in the quasar sky is similar to that of the cosmic microwave background (CMB), its amplitude is over twice as large as expected, rejecting the canonical, exclusively kinematic interpretation of the CMB dipole with a p-value of $5\times10^{-7}$ ($4.9\sigma$ for a normal distribution, one-sided), the highest significance achieved to date in such studies. Our results are in conflict with the cosmological principle, a foundational assumption of the concordance $\Lambda$CDM model.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Blast from the past: Constraints on the dark sector from the BEBC WA66 beam dump experiment

SciPost Physics SciPost 10 (2021) 043

Authors:

Giacomo Marocco, Subir Sarkar

Abstract:

We derive limits on millicharged dark states, as well as particles with electric or magnetic dipole moments, from the number of observed forward electron scattering events at the Big European Bubble Chamber in the 1982 CERN-WA-066 beam dump experiment. The dark states are produced by the 400 GeV proton beam primarily through the decays of mesons produced in the beam dump, and the lack of excess events places bounds extending up to GeV masses. These improve on bounds from all other experiments, in particular CHARM II.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Explaining cosmic ray antimatter with secondaries from old supernova remnants

Physical Review D American Physical Society 104:10 (2021) 103029

Authors:

Philipp Mertsch, Andrea Vittino, Subir Sarkar

Abstract:

Despite significant efforts over the past decade, the origin of the cosmic ray positron excess has still not been unambiguously established. A popular class of candidate sources are pulsars or pulsar wind nebulae but these cannot also account for the observed hard spectrum of cosmic ray antiprotons. We revisit the alternative possibility that the observed high-energy positrons are secondaries created by spallation in supernova remnants during the diffusive shock acceleration of the primary cosmic rays, which are further accelerated by the same shocks. The resulting source spectrum of positrons at high energies is then naturally harder than that of the primaries, as is the spectrum of other secondaries such as antiprotons. We present the first comprehensive investigation of the full parameter space of this model—both the source parameters as well as those governing galactic transport. Various parametrizations of the cross sections for the production of positrons and antiprotons are considered, and the uncertainty in the model parameters discussed. We obtain an excellent fit to recent precision measurements by AMS-02 of cosmic ray protons, helium, positrons, and antiprotons, as well as of various primary and secondary nuclei. This model thus provides an economical explanation of the spectra of all secondary species—from a single well-motivated population of sources.
More details from the publisher
Details from ORA
More details

Detection of a particle shower at the Glashow resonance with IceCube

Nature Springer Nature 591:7849 (2021) 220-224

Abstract:

The Glashow resonance describes the resonant formation of a W<sup>-</sup> boson during the interaction of a high-energy electron antineutrino with an electron<sup>1</sup>, peaking at an antineutrino energy of 6.3 petaelectronvolts (PeV) in the rest frame of the electron. Whereas this energy scale is out of reach for currently operating and future planned particle accelerators, natural astrophysical phenomena are expected to produce antineutrinos with energies beyond the PeV scale. Here we report the detection by the IceCube neutrino observatory of a cascade of high-energy particles (a particle shower) consistent with being created at the Glashow resonance. A shower with an energy of 6.05 ± 0.72 PeV (determined from Cherenkov radiation in the Antarctic Ice Sheet) was measured. Features consistent with the production of secondary muons in the particle shower indicate the hadronic decay of a resonant W<sup>-</sup> boson, confirm that the source is astrophysical and provide improved directional localization. The evidence of the Glashow resonance suggests the presence of electron antineutrinos in the astrophysical flux, while also providing further validation of the standard model of particle physics. Its unique signature indicates a method of distinguishing neutrinos from antineutrinos, thus providing a way to identify astronomical accelerators that produce neutrinos via hadronuclear or photohadronic interactions, with or without strong magnetic fields. As such, knowledge of both the flavour (that is, electron, muon or tau neutrinos) and charge (neutrino or antineutrino) will facilitate the advancement of neutrino astronomy.
More details from the publisher
Details from ORA
More details
More details

Evidence for anisotropy of cosmic acceleration

Astronomy and Astrophysics: a European journal EDP Sciences (2019)

Authors:

Jacques Colin, Roya Mohayaee, Mohamed Rameez, Subir Sarkar

Abstract:

Observations reveal a `bulk flow' in the local Universe which is faster and extends to much larger scales than is expected around a typical observer in the standard $\Lambda$CDM cosmology. This is expected to result in a scale-dependent dipolar modulation of the acceleration of the expansion rate inferred from observations of objects within the bulk flow. From a maximum-likelihood analysis of the Joint Lightcurve Analysis (JLA) catalogue of Type Ia supernovae we find that the deceleration parameter, in addition to a small monopole, indeed has a much bigger dipole component aligned with the CMB dipole which falls exponentially with redshift $z$: $q_0 = q_\mathrm{m} + \vec{q}_\mathrm{d}.\hat{n}\exp(-z/S)$. The best fit to data yields $q_\mathrm{d} = -8.03$ and $S = 0.0262~(\Rightarrow d \sim 100~\mathrm{Mpc})$, rejecting isotropy ($q_\mathrm{d} = 0$) with $3.9\sigma$ statistical significance, while $q_\mathrm{m} = -0.157$ and consistent with no acceleration ($q_\mathrm{m} = 0$) at $1.4\sigma$. Thus the cosmic acceleration deduced from supernovae may be an artefact of our being non-Copernican observers, rather than evidence for a dominant component of `dark energy' in the Universe.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet