Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Search for dark matter from the center of the Earth with 10 years of IceCube data

European Physical Journal C Springer Nature 85:5 (2025) 490

Authors:

R Abbasi, M Ackermann, J Adams, SK Agarwalla, JA Aguilar, M Ahlers, JM Alameddine, NM Amin, K Andeen, C Argüelles, Y Ashida, S Athanasiadou, SN Axani, R Babu, X Bai, A Balagopal V., M Baricevic, SW Barwick, S Bash, V Basu, R Bay, JJ Beatty, J Becker Tjus, J Beise, C Bellenghi, S BenZvi, D Berley, E Bernardini, DZ Besson, E Blaufuss, L Bloom, S Blot, F Bontempo, JY Book Motzkin, C Boscolo Meneguolo, S Böser, O Botner, J Böttcher, J Braun, B Brinson, Z Brisson-Tsavoussis, J Brostean-Kaiser, L Brusa, RT Burley, D Butterfield, MA Campana, I Caracas, K Carloni, J Carpio, S Chattopadhyay, N Chau, Z Chen, D Chirkin, S Choi, BA Clark, A Coleman, P Coleman, GH Collin, A Connolly, JM Conrad, R Corley, DF Cowen, C De Clercq, JJ DeLaunay, D Delgado, S Deng, A Desai, P Desiati, KD de Vries, G de Wasseige, T DeYoung, A Diaz, JC Díaz-Vélez, P Dierichs, M Dittmer, A Domi, L Draper, H Dujmovic, D Durnford, K Dutta, MA DuVernois, T Ehrhardt, L Eidenschink, A Eimer, P Eller, E Ellinger, S El Mentawi, D Elsässer, R Engel, H Erpenbeck, W Esmail, J Evans, PA Evenson, KL Fan, K Fang, K Farrag, AR Fazely, A Fedynitch, N Feigl, S Fiedlschuster, C Finley, L Fischer, D Fox, A Franckowiak, S Fukami, P Fürst, J Gallagher, E Ganster, A Garcia, M Garcia, G Garg, E Genton, L Gerhardt, A Ghadimi, C Girard-Carillo, C Glaser, T Glüsenkamp, JG Gonzalez, S Goswami, A Granados, D Grant, SJ Gray, S Griffin, S Griswold, KM Groth, D Guevel, C Günther, P Gutjahr, C Ha, C Haack, A Hallgren, L Halve, F Halzen, L Hamacher, H Hamdaoui, M Ha Minh, M Handt, K Hanson, J Hardin, AA Harnisch, P Hatch, A Haungs, J Häußler, K Helbing, J Hellrung, J Hermannsgabner, L Heuermann, N Heyer, S Hickford, A Hidvegi, C Hill, GC Hill, R Hmaid, KD Hoffman, S Hori, K Hoshina, M Hostert, W Hou, T Huber, K Hultqvist, M Hünnefeld, R Hussain, K Hymon, A Ishihara, W Iwakiri, M Jacquart, S Jain, O Janik, M Jansson, M Jeong, M Jin, BJP Jones, N Kamp, D Kang, W Kang, X Kang, A Kappes, D Kappesser, L Kardum, T Karg, M Karl, A Karle, A Katil, U Katz, M Kauer, JL Kelley, M Khanal, A Khatee Zathul, A Kheirandish, J Kiryluk, SR Klein, Y Kobayashi, A Kochocki, R Koirala, H Kolanoski, T Kontrimas, L Köpke, C Kopper, DJ Koskinen, P Koundal, M Kowalski, T Kozynets, N Krieger, J Krishnamoorthi, K Kruiswijk, E Krupczak, A Kumar, E Kun, N Kurahashi, N Lad, C Lagunas Gualda, M Lamoureux, MJ Larson, F Lauber, JP Lazar, JW Lee, K Leonard DeHolton, A Leszczyńska, J Liao, M Lincetto, YT Liu, M Liubarska, C Love, L Lu, F Lucarelli, W Luszczak, Y Lyu, J Madsen, E Magnus, KBM Mahn, Y Makino, E Manao, S Mancina, A Mand, W Marie Sainte, IC Mariş, S Marka, Z Marka, M Marsee, I Martinez-Soler, R Maruyama, F Mayhew, F McNally, JV Mead, K Meagher, S Mechbal, A Medina, M Meier, Y Merckx, L Merten, J Mitchell, T Montaruli, RW Moore, Y Morii, R Morse, M Moulai, T Mukherjee, R Naab, M Nakos, U Naumann, J Necker, A Negi, L Neste, M Neumann, H Niederhausen, MU Nisa, K Noda, A Noell, A Novikov, A Obertacke Pollmann, V O’Dell, A Olivas, R Orsoe, J Osborn, E O’Sullivan, V Palusova, H Pandya, N Park, GK Parker, V Parrish, EN Paudel, L Paul, C Pérez de los Heros, T Pernice, J Peterson, A Pizzuto, M Plum, A Pontén, Y Popovych, M Prado Rodriguez, B Pries, R Procter-Murphy, GT Przybylski, L Pyras, C Raab, J Rack-Helleis, N Rad, M Ravn, K Rawlins, Z Rechav, A Rehman, G Renzi, E Resconi, S Reusch, W Rhode, B Riedel, A Rifaie, EJ Roberts, S Robertson, S Rodan, G Roellinghoff, M Rongen, A Rosted, C Rott, T Ruhe, L Ruohan, D Ryckbosch, I Safa, J Saffer, D Salazar-Gallegos, P Sampathkumar, A Sandrock, M Santander, S Sarkar, S Sarkar, J Savelberg, P Savina, P Schaile, M Schaufel, H Schieler, S Schindler, L Schlickmann, B Schlüter, F Schlüter, N Schmeisser, T Schmidt, J Schneider, FG Schröder, L Schumacher, S Schwirn, S Sclafani, D Seckel, L Seen, M Seikh, M Seo, S Seunarine, P Sevle Myhr, R Shah, S Shefali, N Shimizu, M Silva, B Skrzypek, B Smithers, R Snihur, J Soedingrekso, A Søgaard, D Soldin, P Soldin, G Sommani, C Spannfellner, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, T Stezelberger, T Stürwald, T Stuttard, GW Sullivan, I Taboada, S Ter-Antonyan, A Terliuk, M Thiesmeyer, WG Thompson, J Thwaites, S Tilav, K Tollefson, C Tönnis, S Toscano, D Tosi, A Trettin, R Turcotte, MA Unland Elorrieta, AK Upadhyay, K Upshaw, A Vaidyanathan, N Valtonen-Mattila, J Vandenbroucke, N van Eijndhoven, D Vannerom, J van Santen, J Vara, F Varsi, J Veitch-Michaelis, M Venugopal, M Vereecken, S Vergara Carrasco, S Verpoest, D Veske, A Vijai, C Walck, A Wang, C Weaver, P Weigel, A Weindl, J Weldert, AY Wen, C Wendt, J Werthebach, M Weyrauch, N Whitehorn, CH Wiebusch, DR Williams, L Witthaus, M Wolf, G Wrede, XW Xu, JP Yanez, E Yildizci, S Yoshida, R Young, S Yu, T Yuan, A Zegarelli, S Zhang, Z Zhang, P Zhelnin, P Zilberman, M Zimmerman
More details from the publisher
More details

Galactic transient sources with the Cherenkov Telescope Array Observatory

Monthly Notices of the Royal Astronomical Society Oxford University Press 540:1 (2025) 205-238

Authors:

K Abe, S Abe, J Abhir, A Abhishek, F Acero, A Acharyya, R Adam, A Aguasca-Cabot, I Agudo, A Aguirre-Santaella, J Alfaro, R Alfaro, N Alvarez-Crespo, R Alves Batista, J-P Amans, E Amato, G Ambrosi, F Ambrosino, EO Angüner, LA Antonelli, C Aramo, C Arcaro, TTH Arnesen, K Asano

Abstract:

A wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low- and high-mass X-ray binaries containing compact objects, isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar-wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array Observatory (CTAO) and the prospects for studying them with Target of Opportunity observations. We show that CTAO will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. Since some of these sources could also exhibit emission at larger time-scales, we additionally test their detectability at longer exposures. We finally discuss the multiwavelength synergies with other instruments and large astronomical facilities.
More details from the publisher
Details from ORA
More details

QSHS: An Axion Dark Matter Resonant Search Apparatus

(2025)

Authors:

A Alsulami, I Bailey, G Carosi, G Chapman, B Chakraborty, EJ Daw, N Du, S Durham, J Esmenda, J Gallop, T Gamble, T Godfrey, G Gregori, J Halliday, L Hao, E Hardy, EA Laird, P Leek, J March-Russell, PJ Meeson, CF Mostyn, Yu A Pashkin, SO Peatain, M Perry, M Piscitelli, M Reig, EJ Romans, S Sarkar, PJ Smith, A Sokolov, N Song, A Sundararajan, B-K Tan, SM West, S Withington
Details from ArXiV

VERITAS and Multiwavelength Observations of the Blazar B3 2247+381 in Response to an IceCube Neutrino Alert

The Astrophysical Journal American Astronomical Society 982:2 (2025) 80

Authors:

A Acharyya, CB Adams, P Bangale, JT Bartkoske, W Benbow, JH Buckley, JL Christiansen, A Duerr, M Errando, M Escobar Godoy, A Falcone, Q Feng, J Foote, L Fortson, A Furniss, G Gallagher, W Hanlon, D Hanna, O Hervet, CE Hinrichs, J Hoang, J Holder, TB Humensky, W Jin

Abstract:

While the sources of the diffuse astrophysical neutrino flux detected by the IceCube Neutrino Observatory are still largely unknown, one of the promising methods to improve our understanding of them is investigating the potential temporal and spatial correlations between neutrino alerts and the electromagnetic radiation from blazars. We report on the multiwavelength target-of-opportunity observations of the blazar B3 2247+381, taken in response to an IceCube multiplet alert for a cluster of muon neutrino events compatible with the source location between 2022 May 20 and 2022 November 10. B3 2247+381 was not detected with VERITAS during this time period. The source was found to be in a low-flux state in the optical, ultraviolet, and gamma-ray bands for the time interval corresponding to the neutrino event, but was detected in the hard X-ray band with NuSTAR during this period. We find the multiwavelength spectral energy distribution is described well using a simple one-zone leptonic synchrotron self-Compton radiation model. Moreover, assuming the neutrinos originate from hadronic processes within the jet, the neutrino flux would be accompanied by a photon flux from the cascade emission, and the integrated photon flux required in such a case would significantly exceed the total multiwavelength fluxes and the VERITAS upper limits presented here. The lack of flaring activity observed with VERITAS, combined with the low multiwavelength flux levels, as well as the significance of the neutrino excess being at a 3σ level (uncorrected for trials), makes B3 2247+381 an unlikely source of the IceCube multiplet. We conclude that the neutrino excess is likely a background fluctuation.
More details from the publisher
Details from ORA
More details

Search for Neutrino Doublets and Triplets Using 11.4 yr of IceCube Data

Astrophysical Journal American Astronomical Society 981:2 (2025) 159

Authors:

R Abbasi, M Ackermann, J Adams, SK Agarwalla, JA Aguilar, M Ahlers, JM Alameddine, NM Amin, K Andeen, C Argüelles, Y Ashida, S Athanasiadou, SN Axani, R Babu, X Bai, A Balagopal V., M Baricevic, SW Barwick, S Bash, V Basu, R Bay, JJ Beatty, J Becker Tjus, J Beise

Abstract:

We report a search for high-energy astrophysical neutrino multiplets, detections of multiple neutrino clusters in the same direction within 30 days, based on an analysis of 11.4 yr of IceCube data. A new search method optimized for transient neutrino emission with a monthly timescale is employed, providing a higher sensitivity to neutrino fluxes. This result is sensitive to neutrino transient emission, reaching per-flavor flux of approximately 10−10ergcm−2s−1 from the Northern Sky in the energy range E ≳ 50 TeV. The number of doublets and triplets identified in this search is compatible with the atmospheric background hypothesis, which leads us to set limits on the nature of neutrino transient sources with emission timescales of one month.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet