Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • FASER2
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Analytical estimates of proton acceleration in laser-produced turbulent plasmas

(2018)

Authors:

Konstantin Beyer, Brian Reville, Archie Bott, Hye-Sook Park, Subir Sarkar, Gianluca Gregori
More details from the publisher

Review of Particle Physics*

American Physical Society (APS) 98:3 (2018) 030001

Authors:

M Tanabashi, K Hagiwara, K Hikasa, K Nakamura, Y Sumino, F Takahashi, J Tanaka, K Agashe, G Aielli, C Amsler, M Antonelli, DM Asner, H Baer, Sw Banerjee, RM Barnett, T Basaglia, CW Bauer, JJ Beatty, VI Belousov, J Beringer, S Bethke, A Bettini, H Bichsel, O Biebel, KM Black, E Blucher, O Buchmuller, V Burkert, MA Bychkov, RN Cahn, M Carena, A Ceccucci, A Cerri, D Chakraborty, M-C Chen, RS Chivukula, G Cowan, O Dahl, G D’Ambrosio, T Damour, D de Florian, A de Gouvêa, T DeGrand, P de Jong, G Dissertori, BA Dobrescu, M D’Onofrio, M Doser, M Drees, HK Dreiner, DA Dwyer, P Eerola, S Eidelman, J Ellis, J Erler, VV Ezhela, W Fetscher, BD Fields, R Firestone, B Foster, A Freitas, H Gallagher, L Garren, H-J Gerber, G Gerbier, T Gershon, Y Gershtein, T Gherghetta, AA Godizov, M Goodman, C Grab, AV Gritsan, C Grojean, DE Groom, M Grünewald, A Gurtu, T Gutsche, HE Haber, C Hanhart, S Hashimoto, Y Hayato, KG Hayes, A Hebecker, S Heinemeyer, B Heltsley, JJ Hernández-Rey, J Hisano, A Höcker, J Holder, A Holtkamp, T Hyodo, KD Irwin, KF Johnson, M Kado, M Karliner, UF Katz, SR Klein, E Klempt, RV Kowalewski, F Krauss, M Kreps, B Krusche, Yu V Kuyanov, Y Kwon, O Lahav, J Laiho, J Lesgourgues, A Liddle, Z Ligeti, C-J Lin, C Lippmann, TM Liss, L Littenberg, KS Lugovsky, SB Lugovsky, A Lusiani, Y Makida, F Maltoni, T Mannel, AV Manohar, WJ Marciano, AD Martin, A Masoni, J Matthews, U-G Meißner, D Milstead, RE Mitchell, K Mönig, P Molaro, F Moortgat, M Moskovic, H Murayama, M Narain, P Nason, S Navas, M Neubert, P Nevski, Y Nir, KA Olive, S Pagan Griso, J Parsons, C Patrignani, JA Peacock, M Pennington, ST Petcov, VA Petrov, E Pianori, A Piepke, A Pomarol, A Quadt, J Rademacker, G Raffelt, BN Ratcliff, P Richardson, A Ringwald, S Roesler, S Rolli, A Romaniouk, LJ Rosenberg, JL Rosner, G Rybka, RA Ryutin, CT Sachrajda, Y Sakai, GP Salam, S Sarkar, F Sauli, O Schneider, K Scholberg, AJ Schwartz, D Scott, V Sharma, SR Sharpe, T Shutt, M Silari, T Sjöstrand, P Skands, T Skwarnicki, JG Smith, GF Smoot, S Spanier, H Spieler, C Spiering, A Stahl, SL Stone, T Sumiyoshi, MJ Syphers, K Terashi, J Terning, U Thoma, RS Thorne, L Tiator, M Titov, NP Tkachenko, NA Törnqvist, DR Tovey, G Valencia, R Van de Water, N Varelas, G Venanzoni, L Verde, MG Vincter, P Vogel, A Vogt, SP Wakely, W Walkowiak, CW Walter, D Wands, DR Ward, MO Wascko, G Weiglein, DH Weinberg, EJ Weinberg, M White, LR Wiencke, S Willocq, CG Wohl, J Womersley, CL Woody, RL Workman, W-M Yao, GP Zeller, OV Zenin, R-Y Zhu, S-L Zhu, F Zimmermann, PA Zyla, J Anderson, L Fuller, VS Lugovsky, P Schaffner
More details from the publisher
More details

Multi-messenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

ArXiv 1807.08816 (2018)

Authors:

The IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, HES S, INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool telescope, Subaru, Swift NuSTAR, VERITAS, VLA 17B-403 teams

Abstract:

Individual astrophysical sources previously detected in neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017 we detected a high-energy neutrino, IceCube-170922A, with an energy of approximately 290 TeV. Its arrival direction was consistent with the location of a known gamma-ray blazar TXS 0506+056, observed to be in a flaring state. An extensive multi-wavelength campaign followed, ranging from radio frequencies to gamma-rays. These observations characterize the variability and energetics of the blazar and include the first detection of TXS 0506+056 in very-high-energy gamma-rays. This observation of a neutrino in spatial coincidence with a gamma-ray emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos.
Details from ArXiV
More details from the publisher
Details from ORA
More details
More details

Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert

ArXiv 1807.08794 (2018)

Abstract:

A high-energy neutrino event detected by IceCube on 22 September 2017 was coincident in direction and time with a gamma-ray flare from the blazar TXS 0506+056. Prompted by this association, we investigated 9.5 years of IceCube neutrino observations to search for excess emission at the position of the blazar. We found an excess of high-energy neutrino events with respect to atmospheric backgrounds at that position between September 2014 and March 2015. Allowing for time-variable flux, this constitutes 3.5{\sigma} evidence for neutrino emission from the direction of TXS 0506+056, independent of and prior to the 2017 flaring episode. This suggests that blazars are the first identifiable sources of the high-energy astrophysical neutrino flux.
Details from ArXiV
More details from the publisher
Details from ORA
More details
More details

Neutrino Interferometry for High-Precision Tests of Lorentz Symmetry with IceCube

Nature Physics Nature Publishing Group (2018)

Authors:

I Collaboration, MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, IA Samarai, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, J Auffenberg, S Axani, H Bagherpour, X Bai, JP Barron, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, K-H Becker, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, M Börner, F Bos, D Bose, S Böser, O Botner, E Bourbeau, J Bourbeau, F Bradascio, J Braun, L Brayeur, M Brenzke, H-P Bretz, S Bron, J Brostean-Kaiser, A Burgman, T Carver, J Casey, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, DF Cowen, R Cross, M Day, JPAMD André, CD Clercq, JJ DeLaunay, H Dembinski, SD Ridder, P Desiati, KDD Vries, GD Wasseige, MD With, T DeYoung, JC Díaz-Vélez, VD Lorenzo, H Dujmovic, JP Dumm, M Dunkman, E Dvorak, B Eberhardt, T Ehrhardt, B Eichmann, P Eller, PA Evenson, S Fahey, AR Fazely, J Felde, K Filimonov, C Finley, S Flis, A Franckowiak, E Friedman, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, K Ghorbani, W Giang, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, D Grant, Z Griffith, C Haack, A Hallgren, F Halzen, K Hanson, D Hebecker, D Heereman, K Helbing, R Hellauer, S Hickford, J Hignight, GC Hill, KD Hoffman, R Hoffmann, B Hokanson-Fasig, K Hoshina, F Huang, M Huber, K Hultqvist, M Hünnefeld, S In, A Ishihara, E Jacobi, GS Japaridze, M Jeong, K Jero, BJP Jones, P Kalaczynski, W Kang, A Kappes, T Karg, A Karle, T Katori, U Katz, M Kauer, A Keivani, JL Kelley, A Kheirandish, J Kim, M Kim, T Kintscher, J Kiryluk, T Kittler, SR Klein, G Kohnen, R Koirala, H Kolanoski, L Köpke, C Kopper, S Kopper, JP Koschinsky, DJ Koskinen, M Kowalski, K Krings, M Kroll, G Krückl, J Kunnen, S Kunwar, N Kurahashi, T Kuwabara, A Kyriacou, M Labare, JL Lanfranchi, MJ Larson, F Lauber, M Lesiak-Bzdak, M Leuermann, QR Liu, L Lu, J Lünemann, W Luszczak, J Madsen, G Maggi, KBM Mahn, S Mancina, S Mandalia, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, M Medici, M Meier, T Menne, G Merino, T Meures, S Miarecki, J Micallef, G Momenté, T Montaruli, RW Moore, M Moulai, R Nahnhauer, P Nakarmi, U Naumann, G Neer, H Niederhausen, SC Nowicki, DR Nygren, AO Pollmann, A Olivas, A O'Murchadha, T Palczewski, H Pandya, DV Pankova, P Peiffer, JA Pepper, CPDL Heros, D Pieloth, E Pinat, M Plum, PB Price, GT Przybylski, C Raab, L Rädel, M Rameez, K Rawlins, IC Rea, R Reimann, B Relethford, M Relich, E Resconi, W Rhode, M Richman, S Robertson, M Rongen, C Rott, T Ruhe, D Ryckbosch, D Rysewyk, T Sälzer, SES Herrera, A Sandrock, J Sandroos, M Santander, S Sarkar, S Sarkar, K Satalecka, P Schlunder, T Schmidt, A Schneider, S Schoenen, S Schöneberg, L Schumacher, D Seckel, S Seunarine, J Soedingrekso, D Soldin, M Song, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, A Stasik, J Stettner, A Steuer, T Stezelberger, RG Stokstad, A Stößl, NL Strotjohann, T Stuttard, GW Sullivan, M Sutherland, I Taboada, J Tatar, F Tenholt, S Ter-Antonyan, A Terliuk, G Tešić, S Tilav, PA Toale, MN Tobin, S Toscano, D Tosi, M Tselengidou, CF Tung, A Turcati, CF Turley, B Ty, E Unger, M Usner, J Vandenbroucke, WV Driessche, NV Eijndhoven, S Vanheule, JV Santen, M Vehring, E Vogel, M Vraeghe, C Walck, A Wallace, M Wallraff, FD Wandler, N Wandkowsky, A Waza, C Weaver, MJ Weiss, C Wendt, J Werthebach, S Westerhoff, BJ Whelan, K Wiebe, CH Wiebusch, L Wille, DR Williams, L Wills, M Wolf, J Wood, TR Wood, E Woolsey, K Woschnagg, DL Xu, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, T Yuan, M Zoll

Abstract:

Lorentz symmetry is a fundamental space-time symmetry underlying the Standard Model of particle physics and gravity. However, unified theories, such as string theory, allow for violation of this symmetry. Thus, the discovery of Lorentz symmetry violation could be the first hint of these theories. Here, we use high-energy atmospheric neutrinos observed at the IceCube Neutrino Observatory to search for anomalous neutrino oscillations as signals of Lorentz violation. The large range of neutrino energies and propagation baselines, together with high statistics, let us perform the most precise test of space-time symmetry in the neutrino sector to date. We find no evidence for Lorentz violation. This allows us to constrain the size of the dimension-four operator in the Standard-Model Extension for Lorentz violation to the $10^{-28}$ level and to set limits on higher dimensional operators of that theory. These are among the most stringent limits on Lorentz violation across all fields of physics.
More details
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 125
  • Page 126
  • Page 127
  • Page 128
  • Current page 129
  • Page 130
  • Page 131
  • Page 132
  • Page 133
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet