Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future gamma-ray observatories - I. The classical dSphs
ArXiv 1104.0412 (2011)
Abstract:
Due to their large dynamical mass-to-light ratios, dwarf spheroidal galaxies (dSphs) are promising targets for the indirect detection of dark matter (DM) in gamma-rays. We examine their detectability by present and future gamma-ray observatories. The key innovative features of our analysis are: (i) We take into account the angular size of the dSphs; while nearby objects have higher gamma ray flux, their larger angular extent can make them less attractive targets for background-dominated instruments. (ii) We derive DM profiles and the astrophysical J-factor (which parameterises the expected gamma-ray flux, independently of the choice of DM particle model) for the classical dSphs directly from photometric and kinematic data. We assume very little about the DM profile, modelling this as a smooth split-power law distribution, with and without sub-clumps. (iii) We use a Markov Chain Monte Carlo (MCMC) technique to marginalise over unknown parameters and determine the sensitivity of our derived J-factors to both model and measurement uncertainties. (iv) We use simulated DM profiles to demonstrate that our J-factor determinations recover the correct solution within our quoted uncertainties. Our key findings are: (i) Sub-clumps in the dSphs do not usefully boost the signal; (ii) The sensitivity of atmospheric Cherenkov telescopes to dSphs within 20 kpc with cored halos can be up to ~50 times worse than when estimated assuming them to be point-like. Even for the satellite-borne Fermi-LAT the sensitivity is significantly degraded on the relevant angular scales for long exposures, hence it is vital to consider the angular extent of the dSphs when selecting targets; (iii) No DM profile has been ruled out by current data, but using a prior on the inner dark matter cusp slope 0<=gamma<=1 provides J-factor estimates accurate to a factor of a few if an appropriate angular scale [abridged]Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future gamma-ray observatories - I. The classical dSphs
(2011)
Time-Dependent Searches for Point Sources of Neutrinos with the 40-String and 22-String Configurations of IceCube
ArXiv 1104.0075 (2011)
Abstract:
This paper presents searches for flaring sources of neutrinos using the IceCube neutrino telescope. For the first time, a search is performed over the entire parameter space of energy, direction and time looking for neutrino flares of 20 microseconds to a year duration from astrophysical sources among the atmospheric neutrino and muon backgrounds. Searches which integrate over time are less sensitive to flares because they are affected by a larger background of atmospheric neutrinos and muons that can be reduced by the time constraint. Flaring sources considered here, such as active galactic nuclei, soft gamma-ray repeaters and gamma-ray bursts, are promising candidate neutrino emitters. We used mainly data taken between April 5, 2008 and May 20, 2009 by a partially completed configuration of IceCube with 40 strings. For the presented searches an unbinned maximum likelihood method is used with a time-dependent prior to test several different source hypotheses. An "untriggered" search covers any possible time-dependent emission from sources not correlated to any other observation using other astrophysical messengers such as photons. Moreover, a similar time scan is performed for a predefined catalogue of sources that exhibit intense photon flares. Searches triggered by multi-wavelength information on flares from blazars and soft gamma-ray repeaters are performed using the 40 string data and also the data taken by the previous configuration of 22 strings in operation between May 31, 2007 and April 5, 2008. Flares for which extensive and continuous monitoring is available from Fermi-LAT and SWIFT and flares detected by imaging Cherenkov telescopes with shorter time-scale monitoring are considered. The results from all searches are compatible with a fluctuation of the background.Constraints on the Extremely-high Energy Cosmic Neutrino Flux with the IceCube 2008-2009 Data
ArXiv 1103.425 (2011)
Abstract:
We report on a search for extremely-high energy neutrinos with energies greater than $10^6$ GeV using the data taken with the IceCube detector at the South Pole. The data was collected between April 2008 and May 2009 with the half completed IceCube array. The absence of signal candidate events in the sample of 333.5 days of livetime significantly improves model independent limit from previous searches and allows to place a limit on the diffuse flux of cosmic neutrinos with an $E^{-2}$ spectrum in the energy range $2.0 \times 10^{6}$ $-$ $6.3 \times 10^{9}$ GeV to a level of $E^2 \phi \leq 3.6 \times 10^{-8}$ ${\rm GeV cm^{-2} sec^{-1}sr^{-1}}$.Light asymmetric dark matter from new strong dynamics
ArXiv 1103.435 (2011)