Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • FASER2
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Asymmetric dark matter and the sun.

Phys Rev Lett 105:1 (2010) 011301

Authors:

Mads T Frandsen, Subir Sarkar

Abstract:

Cold dark matter particles with an intrinsic matter-antimatter asymmetry do not annihilate after gravitational capture by the Sun and can affect its interior structure. The rate of capture is exponentially enhanced when such particles have self-interactions of the right order to explain structure formation on galactic scales. A "dark baryon" of mass 5 GeV is a natural candidate and has the required relic abundance if its asymmetry is similar to that of ordinary baryons. We show that such particles can solve the "solar composition problem." The predicted small decrease in the low energy neutrino fluxes may be measurable by the Borexino and SNO+ experiments.
More details from the publisher
More details
Details from ArXiV

GZK Neutrinos after the Fermi-LAT Diffuse Photon Flux Measurement

ArXiv 1005.262 (2010)

Authors:

M Ahlers, LA Anchordoqui, MC Gonzalez-Garcia, F Halzen, Subir Sarkar

Abstract:

Cosmogenic neutrinos originate from photo-hadronic interactions of cosmic ray protons with the cosmic microwave background (CMB). The neutrino production rate can be constrained through the accompanying electrons, positrons and gamma-rays that quickly cascade on the CMB and intergalactic magnetic fields to lower energies and generate a gamma ray background in the GeV-TeV region. Bethe-Heitler pair production by protons also contributes to the cascade and can tighten the neutrino constraints in models where extragalactic cosmic rays begin to dominate over the galactic component at a relatively low "crossover" energy. We investigate this issue in the light of the recent Fermi-LAT measurements of the diffuse extragalactic gamma ray background and illustrate by a fit to the HiRes spectrum how the prediction of the cosmogenic neutrino flux in all-proton models varies with the crossover energy. The neutrino flux is required to be smaller when the gamma-ray bound is applied, nevertheless such models are still consistent with HiRes and Fermi-LAT if one properly takes into account the energy uncertainty of cosmic ray measurements. The presently allowed flux is within reach of the IceCube neutrino telescope and other dedicated radio experiments.
Details from ArXiV
More details from the publisher

GZK Neutrinos after the Fermi-LAT Diffuse Photon Flux Measurement

(2010)

Authors:

M Ahlers, LA Anchordoqui, MC Gonzalez-Garcia, F Halzen, Subir Sarkar
More details from the publisher

Using cosmic neutrinos to search for non-perturbative physics at the Pierre Auger Observatory

ArXiv 1004.319 (2010)

Authors:

Luis A Anchordoqui, Haim Goldberg, Dariusz Gora, Thomas Paul, Markus Roth, Subir Sarkar, Lisa Lee Winders

Abstract:

The Pierre Auger (cosmic ray) Observatory provides a laboratory for studying fundamental physics at energies far beyond those available at colliders. The Observatory is sensitive not only to hadrons and photons, but can in principle detect ultrahigh energy neutrinos in the cosmic radiation. Interestingly, it may be possible to uncover new physics by analyzing characteristics of the neutrino flux at the Earth. By comparing the rate for quasi-horizontal, deeply penetrating air showers triggered by all types of neutrinos, with the rate for slightly upgoing showers generated by Earth-skimming tau neutrinos, we determine the ratio of events which would need to be detected in order to signal the existence of new non-perturbative interactions beyond the TeV-scale in which the final state energy is dominated by the hadronic component. We use detailed Monte Carlo simulations to calculate the effects of interactions in the Earth and in the atmosphere. We find that observation of 1 Earth-skimming and 10 quasi-horizontal events would exclude the standard model at the 99% confidence level. If new non-perturbative physics exists, a decade or so would be required to find it in the most optimistic case of a neutrino flux at the Waxman-Bahcall level and a neutrino-nucleon cross-section an order of magnitude above the standard model prediction.
Details from ArXiV
More details from the publisher

Using cosmic neutrinos to search for non-perturbative physics at the Pierre Auger Observatory

(2010)

Authors:

Luis A Anchordoqui, Haim Goldberg, Dariusz Gora, Thomas Paul, Markus Roth, Subir Sarkar, Lisa Lee Winders
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 189
  • Page 190
  • Page 191
  • Page 192
  • Current page 193
  • Page 194
  • Page 195
  • Page 196
  • Page 197
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet