Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

All-flavor constraints on nonstandard neutrino interactions and generalized matter potential with three years of IceCube DeepCore data

Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society

Authors:

IceCube Collaboration, R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, AA Alves Jr, NM Amin, R An, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, Y Ashida, S Axani, X Bai, A Balagopal V, A Barbano, SW Barwick, B Bastian, V Basu, S Baur, R Bay, JJ Beatty, K-H Becker, J Becker Tjus, C Bellenghi, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, F Bontempo, J Borowka, S Böser, O Botner, J Böttcher, E Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, S Browne, A Burgman, RS Busse, MA Campana, C Chen, D Chirkin, K Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, P Dave, C De Clercq, JJ DeLaunay, H Dembinski, K Deoskar, S De Ridder, A Desai, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, S Dharani, A Diaz, JC Díaz-Vélez, H Dujmovic, M Dunkman, MA DuVernois, E Dvorak, T Ehrhardt, P Eller, R Engel, H Erpenbeck, J Evans, PA Evenson, AR Fazely, S Fiedlschuster, AT Fienberg, K Filimonov, C Finley, L Fischer, D Fox, A Franckowiak, E Friedman, A Fritz, P Fürst, TK Gaisser, J Gallagher, E Ganster, A Garcia, S Garrappa, L Gerhardt, A Ghadimi, C Glaser, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, S Goswami, D Grant, T Grégoire, S Griswold, M Gündüz, C Günther, C Haack, A Hallgren, R Halliday, L Halve, F Halzen, M Ha Minh, K Hanson, J Hardin, AA Harnisch, A Haungs, S Hauser, D Hebecker, K Helbing, F Henningsen, EC Hettinger, S Hickford, J Hignight, C Hill, GC Hill, KD Hoffman, R Hoffmann, T Hoinka, B Hokanson-Fasig, K Hoshina, F Huang, M Huber, T Huber, K Hultqvist, M Hünnefeld, R Hussain, S In, N Iovine, A Ishihara, M Jansson, GS Japaridze, M Jeong, BJP Jones, R Joppe, D Kang, W Kang, X Kang, A Kappes, D Kappesser, T Karg, M Karl, A Karle, U Katz, M Kauer, M Kellermann, JL Kelley, A Kheirandish, K Kin, T Kintscher, J Kiryluk, SR Klein, R Koirala, H Kolanoski, T Kontrimas, L Köpke, C Kopper, S Kopper, DJ Koskinen, P Koundal, M Kovacevich, M Kowalski, N Kurahashi, A Kyriacou, N Lad, C Lagunas Gualda, JL Lanfranchi, MJ Larson, F Lauber, JP Lazar, JW Lee, K Leonard, A Leszczyńska, Y Li, M Lincetto, QR Liu, M Liubarska, E Lohfink, CJ Lozano Mariscal, L Lu, F Lucarelli, A Ludwig, W Luszczak, Y Lyu, WY Ma, J Madsen, KBM Mahn, Y Makino, S Mancina, IC Mariş, R Maruyama, K Mase, T McElroy, F McNally, K Meagher, A Medina, M Meier, S Meighen-Berger, J Merz, J Micallef, D Mockler, T Montaruli, RW Moore, R Morse, M Moulai, R Naab, R Nagai, U Naumann, J Necker, LV Nguyên, H Niederhausen, MU Nisa, SC Nowicki, DR Nygren, A Obertacke Pollmann, M Oehler, A Olivas, E O'Sullivan, H Pandya, DV Pankova, N Park, GK Parker, EN Paudel, L Paul, C Pérez de los Heros, S Philippen, D Pieloth, S Pieper, M Pittermann, A Pizzuto, M Plum, Y Popovych, A Porcelli, M Prado Rodriguez, PB Price, B Pries, GT Przybylski, C Raab, A Raissi, M Rameez, K Rawlins, IC Rea, A Rehman, R Reimann, G Renzi, E Resconi, S Reusch, W Rhode, M Richman, B Riedel, S Robertson, G Roellinghoff, M Rongen, C Rott, T Ruhe, D Ryckbosch, D Rysewyk Cantu, I Safa, J Saffer, SE Sanchez Herrera, A Sandrock, J Sandroos, M Santander, S Sarkar, S Sarkar, K Satalecka, M Scharf, M Schaufel, H Schieler, P Schlunder, T Schmidt, A Schneider, J Schneider, FG Schröder, L Schumacher, S Sclafani, D Seckel, S Seunarine, A Sharma, S Shefali, M Silva, B Skrzypek, B Smithers, R Snihur, J Soedingrekso, D Soldin, C Spannfellner, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, R Stein, J Stettner, A Steuer, T Stezelberger, T Stürwald, T Stuttard, GW Sullivan, I Taboada, F Tenholt, S Ter-Antonyan, A Terliuk, S Tilav, F Tischbein, K Tollefson, L Tomankova, C Tönnis, S Toscano, D Tosi, A Trettin, M Tselengidou, CF Tung, A Turcati, R Turcotte, CF Turley, JP Twagirayezu, B Ty, MA Unland Elorrieta, N Valtonen-Mattila, J Vandenbroucke, N van Eijndhoven, D Vannerom, J van Santen, S Verpoest, M Vraeghe, C Walck, A Wallace, TB Watson, C Weaver, P Weigel, A Weindl, MJ Weiss, J Weldert, C Wendt, J Werthebach, M Weyrauch, BJ Whelan, N Whitehorn, CH Wiebusch, DR Williams, M Wolf, K Woschnagg, G Wrede, J Wulff, XW Xu, Y Xu, JP Yanez, S Yoshida, S Yu, T Yuan, Z Zhang

Abstract:

We report constraints on nonstandard neutrino interactions (NSI) from the observation of atmospheric neutrinos with IceCube, limiting all individual coupling strengths from a single dataset. Furthermore, IceCube is the first experiment to constrain flavor-violating and nonuniversal couplings simultaneously. Hypothetical NSI are generically expected to arise due to the exchange of a new heavy mediator particle. Neutrinos propagating in matter scatter off fermions in the forward direction with negligible momentum transfer. Hence the study of the matter effect on neutrinos propagating in the Earth is sensitive to NSI independently of the energy scale of new physics. We present constraints on NSI obtained with an all-flavor event sample of atmospheric neutrinos based on three years of IceCube DeepCore data. The analysis uses neutrinos arriving from all directions, with reconstructed energies between 5.6 GeV and 100 GeV. We report constraints on the individual NSI coupling strengths considered singly, allowing for complex phases in the case of flavor-violating couplings. This demonstrates that IceCube is sensitive to the full NSI flavor structure at a level competitive with limits from the global analysis of all other experiments. In addition, we investigate a generalized matter potential, whose overall scale and flavor structure are also constrained.
More details
More details from the publisher
More details
Details from ArXiV

Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data

Physical Review Letters American Physical Society

Authors:

IceCube Collaboration, MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, J Auffenberg, S Axani, P Backes, H Bagherpour, X Bai, A Balagopal V, A Barbano, SW Barwick, B Bastian, V Baum, S Baur, R Bay

Abstract:

We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010 -- 2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated ($\sim 90 \%$) by electron and tau flavors. The flux, observed in the energy range from $16\,\mathrm{TeV} $ to $2.6\,\mathrm{PeV}$, is consistent with a single power-law as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be $\gamma=2.53\pm0.07$ and a flux normalization for each neutrino flavor of $\phi_{astro} = 1.66^{+0.25}_{-0.27}$ at $E_{0} = 100\, \mathrm{TeV}$. This flux of electron and tau neutrinos is in agreement with IceCube muon neutrino results and with all-neutrino flavor results. Results from fits assuming more complex neutrino flux models suggest a flux softening at high energies and a flux hardening at low energies (p-value $\ge 0.06$).
More details from the publisher
More details
More details
Details from ArXiV

Colloquium: The Cosmic Dipole Anomaly

Reviews of Modern Physics American Physical Society

Authors:

Sebastian Von Hausegger, Roya mohayaee, nathan secrest, rameez, Subir Sarkar

Abstract:

The Cosmological Principle, which states that the Universe is homogeneous and isotropic (when averaged on large scales), is the foundational assumption of Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmologies such as the current standard Lambda-Cold-Dark-Matter (ΛCDM) model. This simplification yields an exact solution to the Einstein field equations that relates space and time through a single time-dependent scale factor, which defines cosmological observables such as the Hubble parameter and the cosmological redshift. The validity of the Cosmological Principle, which underpins modern cosmology, can now be rigorously tested with the advent of large, nearly all-sky catalogs of radio galaxies and quasars. Surprisingly, the dipole anisotropy in the large-scale distribution of matter is found to be inconsistent with the expectation from kinematic aberration and Doppler boosting effects in a perturbed FLRW universe, which is the standard interpretation of the observed dipole in the cosmic microwave background (CMB). Although the matter dipole agrees in direction with that of the CMB dipole, it is anomalously larger, demonstrating that either the rest frames in which matter and radiation appear isotropic are not the same, or that there is an unexpected intrinsic anisotropy in at least one of them. This discrepancy now exceeds 5σ in significance. We review these recent findings, as well as the potential biases, systematic issues, and alternate interpretations that have been suggested to help alleviate the tension. We conclude that the cosmic dipole anomaly poses a serious challenge to FLRW cosmology, and the standard ΛCDM model in particular, as an adequate description of our Universe.
More details from the publisher

Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU

Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society

Authors:

IceCube-Gen2 Collaboration, MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, TC Arlen, J Auffenberg, S Axani, P Backes, H Bagherpour, X Bai, A Balagopal V, A Barbano, I Bartos, SW Barwick, B Bastian, V Baum, S Baur, R Bay, JJ Beatty, K-H Becker, J Becker Tjus, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, M Bohmer, S Böser, O Botner, J Böttcher, E Bourbeau, J Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, A Burgman, J Buscher, RS Busse, T Carver, C Chen, E Cheung, D Chirkin, S Choi, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, P Dave, C De Clercq, JJ DeLaunay, H Dembinski, K Deoskar, S De Ridder, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, A Diaz, JC Díaz-Vélez, H Dujmovic, M Dunkman, MA DuVernois, E Dvorak, B Eberhardt, T Ehrhardt, P Eller, R Engel, JJ Evans, PA Evenson, S Fahey, K Farrag, AR Fazely, J Felde, K Filimonov, C Finley, D Fox, A Franckowiak, E Friedman, A Fritz, TK Gaisser, J Gallagher, E Ganster, S Garrappa, A Gartner, L Gerhardt, R Gernhaeuser, K Ghorbani, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, D Grant, Z Griffith, S Griswold, M Günder, M Gündüz, C Haack, A Hallgren, R Halliday, L Halve, F Halzen, K Hanson, J Haugen, A Haungs, D Hebecker, D Heereman, P Heix, K Helbing, R Hellauer, F Henningsen, S Hickford, J Hignight, GC Hill, KD Hoffman, B Hoffmann, R Hoffmann, T Hoinka, B Hokanson-Fasig, K Holzapfel, K Hoshina, F Huang, M Huber, T Huber, T Huege, K Hultqvist, M Hünnefeld, R Hussain, S In, N Iovine, A Ishihara, GS Japaridze, M Jeong, K Jero, BJP Jones, F Jonske, R Joppe, O Kalekin, D Kang, W Kang, A Kappes, D Kappesser, T Karg, M Karl, A Karle, T Katori, U Katz, M Kauer, A Keivani, JL Kelley, A Kheirandish, J Kim, T Kintscher, J Kiryluk, T Kittler, SR Klein, R Koirala, H Kolanoski, L Köpke, C Kopper, S Kopper, DJ Koskinen, M Kowalski, CB Krauss, K Krings, G Krückl, N Kulacz, N Kurahashi, A Kyriacou, JL Lanfranchi, MJ Larson, F Lauber, JP Lazar, K Leonard, A Leszczyńska, M Leuermann, QR Liu, E Lohfink, J LoSecco, CJ Lozano Mariscal, L Lu, F Lucarelli, J Lünemann, W Luszczak, Y Lyu, WY Ma, J Madsen, G Maggi, KBM Mahn, Y Makino, P Mallik, K Mallot, S Mancina, S Mandalia, IC Mariş, S Marka, Z Marka, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, M Medici, A Medina, M Meier, S Meighen-Berger, G Merino, T Meures, J Micallef, D Mockler, G Momenté, T Montaruli, RW Moore, R Morse, M Moulai, P Muth, R Nagai, U Naumann, G Neer, H Niederhausen, MU Nisa, SC Nowicki, DR Nygren, A Obertacke Pollmann, M Oehler, A Olivas, A O'Murchadha, E O'Sullivan, T Palczewski, H Pandya, DV Pankova, L Papp, N Park, P Peiffer, C Pérez de los Heros, TC Petersen, S Philippen, D Pieloth, E Pinat, JL Pinfold, A Pizzuto, M Plum, A Porcelli, PB Price, GT Przybylski, C Raab, A Raissi, M Rameez, L Rauch, K Rawlins, IC Rea, R Reimann, B Relethford, M Renschler, G Renzi, E Resconi, W Rhode, M Richman, M Riegel, S Robertson, M Rongen, C Rott, T Ruhe, D Ryckbosch, D Rysewyk, I Safa, SE Sanchez Herrera, A Sandrock, J Sandroos, P Sandstrom, M Santander, S Sarkar, S Sarkar, K Satalecka, M Schaufel, H Schieler, P Schlunder, T Schmidt, A Schneider, J Schneider, FG Schröder, L Schumacher, S Sclafani, D Seckel, S Seunarine, MH Shaevitz, S Shefali, M Silva, R Snihur, J Soedingrekso, D Soldin, S Söldner-Rembold, M Song, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, R Stein, J Stettner, A Steuer, T Stezelberger, RG Stokstad, A Stößl, NL Strotjohann, T Stürwald, T Stuttard, GW Sullivan, I Taboada, A Taketa, HKM Tanaka, F Tenholt, S Ter-Antonyan, A Terliuk, S Tilav, K Tollefson, L Tomankova, C Tönnis, S Toscano, D Tosi, A Trettin, M Tselengidou, CF Tung, A Turcati, R Turcotte, CF Turley, B Ty, E Unger, MA Unland Elorrieta, M Usner, J Vandenbroucke, W Van Driessche, D van Eijk, N van Eijndhoven, J van Santen, D Veberic, S Verpoest, M Vraeghe, C Walck, A Wallace, M Wallraff, N Wandkowsky, TB Watson, C Weaver, A Weindl, MJ Weiss, J Weldert, C Wendt, J Werthebach, BJ Whelan, N Whitehorn, K Wiebe, CH Wiebusch, L Wille, DR Williams, L Wills, M Wolf, J Wood, TR Wood, K Woschnagg, G Wrede, S Wren, DL Xu, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, T Yuan, M Zöcklein, JUNO Collaboration Members, TJC Bezerra, T Birkenfeld, D Blum, M Bongrand, A Cabrera, YP Cheng, W Depnering, O Dötterl, T Enqvist, H Enzmann, C Genster, M Grassi, AS Göttel, P Hackspacher, C Hagner, Y Han, T Heinz, P Kampmann, P Kuusiniemi, T Lachenmaier, K Loo, S Lorenz, B Lubsandorzhiev, L Ludhova, Y Malyshkin, D Meyhöfer, L Miramonti, A Müller, LJN Oberauer, O Pilarczyk, H Rebber, J Sawatzki, M Schever, K Schweizer, M Settimo, C Sirignano, M Smirnov, A Stahl, HTJ Steiger, J Steinmann, T Sterr, MR Stock, A Studenikin, A Tietzsch, WH Trzaska, B Viaud, C Volpe, W Wang, BS Wonsak, M Wurm, C Wysotzki, Y Xu, D Xuefeng, F Yermia

Abstract:

The ordering of the neutrino mass eigenstates is one of the fundamental open questions in neutrino physics. While current-generation neutrino oscillation experiments are able to produce moderate indications on this ordering, upcoming experiments of the next generation aim to provide conclusive evidence. In this paper we study the combined performance of the two future multi-purpose neutrino oscillation experiments JUNO and the IceCube Upgrade, which employ two very distinct and complementary routes towards the neutrino mass ordering. The approach pursued by the $20\,\mathrm{kt}$ medium-baseline reactor neutrino experiment JUNO consists of a careful investigation of the energy spectrum of oscillated $\bar{\nu}_e$ produced by ten nuclear reactor cores. The IceCube Upgrade, on the other hand, which consists of seven additional densely instrumented strings deployed in the center of IceCube DeepCore, will observe large numbers of atmospheric neutrinos that have undergone oscillations affected by Earth matter. In a joint fit with both approaches, tension occurs between their preferred mass-squared differences $ \Delta m_{31}^{2}=m_{3}^{2}-m_{1}^{2} $ within the wrong mass ordering. In the case of JUNO and the IceCube Upgrade, this allows to exclude the wrong ordering at $>5\sigma$ on a timescale of 3--7 years --- even under circumstances that are unfavorable to the experiments' individual sensitivities. For PINGU, a 26-string detector array designed as a potential low-energy extension to IceCube, the inverted ordering could be excluded within 1.5 years (3 years for the normal ordering) in a joint analysis.
More details
More details from the publisher
Details from ORA
More details
Details from ArXiV

Constraints on Neutrino Emission from Nearby Galaxies Using the 2MASS Redshift Survey and IceCube

Journal of Cosmology and Astroparticle Physics IOP Publishing

Authors:

A O'Murchadha, E O'Sullivan, T Palczewski, AO Pollmann, SC Nowicki, H Pandya, A Olivas, M Oehler, Nygren, S Philippen, DV Pankova, CPDL Heros, D Pieloth, A Pizzuto, E Bourbeau, P Peiffer, E Pinat, N Park, JG Gonzalez, A Hallgren, M Gündüz, S Griswold, Z Griffith, R Halliday, M Günder

Abstract:

The distribution of galaxies within the local universe is characterized by anisotropic features. Observatories searching for the production sites of astrophysical neutrinos can take advantage of these features to establish directional correlations between a neutrino dataset and overdensities in the galaxy distribution in the sky. The results of two correlation searches between a seven-year time-integrated neutrino dataset from the IceCube Neutrino Observatory, and the 2MASS Redshift Survey (2MRS) catalog are presented here. The first analysis searches for neutrinos produced via interactions between diffuse intergalactic Ultra-High Energy Cosmic Rays (UHECRs) and the matter contained within galaxies. The second analysis searches for low-luminosity sources within the local universe, which would produce subthreshold multiplets in the IceCube dataset that directionally correlate with galaxy distribution. No significant correlations were observed in either analyses. Constraints are presented on the flux of neutrinos originating within the local universe through diffuse intergalactic UHECR interactions, as well as on the density of standard candle sources of neutrinos at low luminosities.
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 243
  • Page 244
  • Page 245
  • Page 246
  • Current page 247
  • Page 248
  • Page 249
  • Page 250
  • Page 251
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet