Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Dr Ludovic Scyboz

Visitor

Research theme

  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
ludovic.scyboz@physics.ox.ac.uk
Telephone: 01865 273951
  • About
  • Publications

NLO and off-shell effects in top quark mass determinations

Journal of High Energy Physics Springer Nature 2018:7 (2018) 129

Authors:

Gudrun Heinrich, Andreas Maier, Richard Nisius, Johannes Schlenk, Markus Schulze, Ludovic Scyboz, Jan Winter
More details from the publisher
Details from ArXiV

Colour and logarithmic accuracy in final-state parton showers

Authors:

Keith Hamilton, Rok Medves, Gavin P Salam, Ludovic Scyboz, Gregory Soyez

Abstract:

Standard dipole parton showers are known to yield incorrect subleading-colour contributions to the leading (double) logarithmic terms for a variety of observables. In this work, concentrating on final-state showers, we present two simple, computationally efficient prescriptions to correct this problem, exploiting a Lund-diagram type classification of emission regions. We study the resulting effective multiple-emission matrix elements generated by the shower, and discuss their impact on subleading colour contributions to leading and next-to-leading logarithms (NLL) for a range of observables. In particular we show that the new schemes give the correct full colour NLL terms for global observables and multiplicities. Subleading colour issues remain at NLL (single logarithms) for non-global observables, though one of our two schemes reproduces the correct full-colour matrix-element for any number of energy-ordered commensurate-angle pairs of emissions. While we carry out our tests within the PanScales shower framework, the schemes are sufficiently simple that it should be straightforward to implement them also in other shower frameworks.
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet