Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
CMP
Credit: Jack Hobhouse

Xinyi Shen

Graduate Student

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics
xinyi.shen@physics.ox.ac.uk
Robert Hooke Building, room G26
  • About
  • Publications

Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss

Science American Association for the Advancement of Science 384:6697 (2024) 767-775

Authors:

Yen-Hung Lin, Vikram, Fengning Yang, Xue-Li Cao, Akash Dasgupta, Robert DJ Oliver, Aleksander M Ulatowski, Melissa M McCarthy, Xinyi Shen, Qimu Yuan, M Greyson Christoforo, Fion Sze Yan Yeung, Michael B Johnston, Nakita K Noel, Laura M Herz, M Saiful Islam, Henry J Snaith

Abstract:

The efficiency and longevity of metal-halide perovskite solar cells are typically dictated by nonradiative defect-mediated charge recombination. In this work, we demonstrate a vapor-based amino-silane passivation that reduces photovoltage deficits to around 100 millivolts (>90% of the thermodynamic limit) in perovskite solar cells of bandgaps between 1.6 and 1.8 electron volts, which is crucial for tandem applications. A primary-, secondary-, or tertiary-amino–silane alone negatively or barely affected perovskite crystallinity and charge transport, but amino-silanes that incorporate primary and secondary amines yield up to a 60-fold increase in photoluminescence quantum yield and preserve long-range conduction. Amino-silane–treated devices retained 95% power conversion efficiency for more than 1500 hours under full-spectrum sunlight at 85°C and open-circuit conditions in ambient air with a relative humidity of 50 to 60%.

More details from the publisher
Details from ORA
More details
More details

Dataset-chloride-based additive engineering for efficient and stable wide-bandgap perovskite solar cells

University of Oxford (2024)

Abstract:

Data and figures generated for the manuscript 'Chloride-based additive engineering for efficient and stable wide-bandgap perovskite solar cells'.
More details from the publisher
Details from ORA

Chloride-based additive engineering for efficient and stable wide-bandgap perovskite solar cells

Advanced Materials Wiley 35:30 (2023) e2211742

Authors:

Xinyi Shen, Benjamin M Gallant, Philippe Holzhey, Joel A Smith, Karim A Elmestekawy, Zhongcheng Yuan, Pvgm Rathnayake, Stefano Bernardi, Akash Dasgupta, Ernestas Kasparavicius, Tadas Malinauskas, Pietro Caprioglio, Oleksandra Shargaieva, Yen-Hung Lin, Melissa M McCarthy, Eva Unger, Vytautas Getautis, Asaph Widmer-Cooper, Laura M Herz, Henry J Snaith

Abstract:

Metal halide perovskite based tandem solar cells are promising to achieve power conversion efficiency beyond the theoretical limit of their single-junction counterparts. However, overcoming the significant open-circuit voltage deficit present in wide-bandgap perovskite solar cells remains a major hurdle for realizing efficient and stable perovskite tandem cells. Here, a holistic approach to overcoming challenges in 1.8 eV perovskite solar cells is reported by engineering the perovskite crystallization pathway by means of chloride additives. In conjunction with employing a self-assembled monolayer as the hole-transport layer, an open-circuit voltage of 1.25 V and a power conversion efficiency of 17.0% are achieved. The key role of methylammonium chloride addition is elucidated in facilitating the growth of a chloride-rich intermediate phase that directs crystallization of the desired cubic perovskite phase and induces more effective halide homogenization. The as-formed 1.8 eV perovskite demonstrates suppressed halide segregation and improved optoelectronic properties.
More details from the publisher
Details from ORA
More details
More details

Open-circuit and short-circuit loss management in wide-gap perovskite p-i-n solar cells

Nature communications Springer Nature 14:1 (2023) 932

Authors:

Pietro Caprioglio, Joel A Smith, Robert DJ Oliver, Akash Dasgupta, Saqlain Choudhary, Michael D Farrar, Alexandra J Ramadan, Yen-Hung Lin, M Greyson Christoforo, James M Ball, Jonas Diekmann, Jarla Thiesbrummel, Karl-Augustin Zaininger, Xinyi Shen, Michael B Johnston, Dieter Neher, Martin Stolterfoht, Henry J Snaith

Abstract:

In this work, we couple theoretical and experimental approaches to understand and reduce the losses of wide bandgap Br-rich perovskite pin devices at open-circuit voltage (VOC) and short-circuit current (JSC) conditions. A mismatch between the internal quasi-Fermi level splitting (QFLS) and the external VOC is detrimental for these devices. We demonstrate that modifying the perovskite top-surface with guanidinium-Br and imidazolium-Br forms a low-dimensional perovskite phase at the n-interface, suppressing the QFLS-VOC mismatch, and boosting the VOC. Concurrently, the use of an ionic interlayer or a self-assembled monolayer at the p-interface reduces the inferred field screening induced by mobile ions at JSC, promoting charge extraction and raising the JSC. The combination of the n- and p-type optimizations allows us to approach the thermodynamic potential of the perovskite absorber layer, resulting in 1 cm2 devices with performance parameters of VOCs up to 1.29 V, fill factors above 80% and JSCs up to 17 mA/cm2, in addition to a thermal stability T80 lifetime of more than 3500 h at 85 °C.

More details from the publisher
Details from ORA
More details
More details

Crystal-facet-directed all vacuum-deposited perovskite solar cells

Nature Materials Springer Nature

Authors:

Xinyi Shen, Wing Tung Hui, Shuaifeng Hu, Fengning Yang, Junke Wang, Jin Yao, Atse Louwen, Bryan Siu Ting Tam, Lirong Rong, David McMeekin, Kilian Lohmann, Qimu Yuan, Matthew Naylor, Manuel Kober-Czerny, Seongrok Seo, Philippe Holzhey, Karl-Augustin Zaininger, Mark Christoforo, Perrine Carroy, Vincent Barth, Fion Sze Yan Yeung, Nakita Noel, Michael Johnston, Yen-Hung Lin, Henry Snaith

Abstract:

Vacuum-based deposition is a scalable, solvent-free industrial method ideal for uniform coatings on complex substrates. However, all vacuum-deposited perovskite solar cells fabricated by thermal evaporation trail solution-processed counterparts in efficiency and stability due to film quality challenges, necessitating advancement and improved understanding. Here, we report a co-evaporation route for 1.67-eV wide-bandgap perovskites by introducing a PbCl2 co-source to optimize film quality. We promote perovskite formation with pronounced (100) “face-up” orientation and deliver a certified all vacuum-deposited solar cell with 18.35% efficiency (19.3% in the lab) for 0.25-cm2 devices (18.5% for 1-cm2 cells). These cells retain 80% of peak efficiency after 1,080 hours under the ISOS-L-2 protocol. Leveraging operando hyperspectral imaging, we provide spatiotemporal spectral insight into halide segregation and trap-mediated recombination, correlating microscopic luminescence features with macroscopic device performance while distinguishing radiative from non-ideal recombination channels. We further demonstrate 27.2%-efficient 1-cm2 evaporated perovskite-on-silicon tandems and outdoor stability of all vacuum-deposited tandems in Italy, retaining ~80% initial performance after 8 months.
Details from ORA

Pagination

  • Current page 1
  • Page 2
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet