Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
topological PDW

Dr Shuqiu Wang

Long-term visitor

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Macroscopic Quantum Matter
shuqiu.wang@physics.ox.ac.uk
Clarendon Laboratory, room ,512.10.22
Group website
  • About
  • Education and Employment
  • Topological superconductivity
  • High-temperature superconductivity
  • Millikelvin STM development
  • Scanned Josephson tunneling microscopy
  • Ultrathin film and nanostructure synthsis and visualization
  • Selected invited lectures
  • Prizes, awards and recognition
  • Teaching
  • Outreach and Diversity
  • Organization
  • Publications

Discovery of orbital ordering in the cuprates

Orbital ordering in the high-temperature superconductor
Orbital ordering in the high-temperature superconductor
Nature Materials 23, 492–498 (2024)

Influence of the support on stabilizing local defects in strained monolayer oxide films

Nanoscale Royal Society of Chemistry 11 (2019) 2412-2422

Authors:

Shuqiu Wang, Xiao Hu, J Goniakowski, C Noguera, Martin Castell

Abstract:

Two-dimensional materials with a honeycomb lattice, such as graphene and hexagonal boron nitride, often contain local defects in which the hexagonal elements are replaced by four-, five-, seven-, and eight-membered rings. An example is the Stone-Wales (S-W) defect, where a bond rotation causes four hexagons to be transformed into a cluster of two pentagons and two heptagons. A further series of similar defects incorporating divacancies results in larger structures of non-hexagonal elements. In this paper, we use scanning tunneling microscopy (STM) and density functional theory (DFT) modeling to investigate the structure and energetics of S-W and divacancy defects in a honeycomb (2 × 2) Ti2O3 monolayer grown on an Au(111) substrate. The epitaxial rumpled Ti2O3 monolayer is pseudomorphic and in a state of elastic compression. As a consequence, divacancy defects, which induce tension in freestanding films, relieve the compression in the epitaxial Ti2O3 monolayer and therefore have significantly lower energies when compared with their freestanding counterparts. We find that at the divacancy defect sites there is a local reduction of the charge transfer between the film and the substrate, the rumpling is reduced, and the film has an increased separation from the substrate. Our results demonstrate the capacity of the substrate to significantly influence the energetics, and hence favor vacancy-type defects, in compressively strained 2D materials. This approach could be applied more broadly, for example to tensile monolayers, where vacancy-type defects would be rare and interstitial-type defects might be favored.
More details from the publisher
Details from ORA
More details
More details

Maximising the resolving power of the scanning tunneling microscope

Advanced Structural and Chemical Imaging SpringerOpen 4 (2018) 7

Authors:

Lewys Jones, Shuqiu Wang, Xiao Hu, Shams ur Rahman, Martin Castell

Abstract:

The usual way to present images from a scanning tunneling microscope (STM) is to take multiple images of the same area, to then manually select the one that appears to be of the highest quality, and then to discard the other almost identical images. This is in contrast to most other disciplines where the signal to noise ratio (SNR) of a data set is improved by taking repeated measurements and averaging them. Data averaging can be routinely performed for 1D spectra, where their alignment is straightforward. However, for serial-acquired 2D STM images the nature and variety of image distortions can severely complicate accurate registration. Here, we demonstrate how a significant improvement in the resolving power of the STM can be achieved through automated distortion correction and multi-frame averaging (MFA) and we demonstrate the broad utility of this approach with three examples. First, we show a sixfold enhancement of the SNR of the Si(111)-(7 × 7) reconstruction. Next, we demonstrate that images with sub-picometre height precision can be routinely obtained and show this for a monolayer of Ti2O3 on Au(111). Last, we demonstrate the automated classification of the two chiral variants of the surface unit cells of the (4 × 4) reconstructed SrTiO3(111) surface. Our new approach to STM imaging will allow a wealth of structural and electronic information from surfaces to be extracted that was previously buried in noise.
More details from the publisher
Details from ORA
More details
More details

Single-layer TiOx reconstructions on SrTiO3 (111): (√7 × √7)R19.1°, (√13 × √13)R13.9°, and related structures

Surface Science Elsevier 675 (2018) 36-41

Authors:

TK Andersen, Shuqiu Wang, Martin Castell, DD Fong, LD Marks

Abstract:

The atomic structures of two reconstructions, (√7 × √7)R19.1° and (√13 × √13)R13.9°, on the SrTiO3 (111) surface were determined using a combination of density functional theory and scanning tunneling microscopy data and APW + lo density functional theory minimizations and simulations. These reconstructions belong to the same structural family made up of an interconnected, single layer of edge-sharing TiO6 and TiO5[] octahedra. This family of reconstructions between 0.5 and 1.5 excess TiO2, representing the lowest-reported TiO2 coverages for reconstructions on this surface. This family is found to include the previously-solved (2 × 2)a reconstruction. They all follow a simple rule for surface composition, which serves as a tool for better understanding and predicting the structure of other reconstructions of arbitrary surface unit cell size on SrTiO3 (111). This reconstruction family and the calculations of surface energies for different hypothesis structures also shed light on the structure of Schottky defects observed on these reconstructed SrTO3 (111) surfaces.
More details from the publisher
Details from ORA
More details

Oxidation mechanism of SiC–Zirconia–Glass ceramic coated carbon/carbon composites at 1123–1273K

Materials Research Bulletin Elsevier 91 (2017) 189-196

Authors:

Shuqiu Wang, Fanhao Zeng, Yi Li, Yi Gu, Fuqin Zhang, Xiang Xiong
More details from the publisher
More details

Oxidation mechanism of SiC–Zirconia–Glass ceramic coated carbon/carbon composites at 1123–1273 K

Materials Research Bulletin, 91, 189, 2017

Authors:

S. Wang, F. Zeng, Y. Li, Y. Gu, F. Zhang, X. Xiong

Abstract:

More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet