Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Steve Simon

Professorial Research Fellow and Professorial Fellow of Somerville College

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
steven.simon@physics.ox.ac.uk
Telephone: 01865 (2)73954
Rudolf Peierls Centre for Theoretical Physics, room 70.06
  • About
  • Publications

Three-dimensional topological lattice models with surface anyons

PHYSICAL REVIEW B 87:4 (2013) ARTN 045107

Authors:

CW von Keyserlingk, FJ Burnell, SH Simon
More details from the publisher

Exactly Solvable Lattice Models with Crossing Symmetry

(2012)

Authors:

Steven H Simon, Paul Fendley
More details from the publisher

Spin-singlet Gaffnian wave function for fractional quantum Hall systems

(2012)

Authors:

Simon C Davenport, Eddy Ardonne, Nicolas Regnault, Steven H Simon
More details from the publisher

Three-dimensional topological lattice models with surface anyons

(2012)

Authors:

CW von Keyserlingk, FJ Burnell, Steven H Simon
More details from the publisher

Fractional quantum hall effect of lattice bosons near commensurate flux

Physical Review Letters 108:25 (2012)

Authors:

L Hormozi, G Möller, SH Simon

Abstract:

We study interacting bosons on a lattice in a magnetic field. When the number of flux quanta per plaquette is close to a rational fraction, the low-energy physics is mapped to a multispecies continuum model: bosons in the lowest Landau level where each boson is given an internal degree of freedom, or pseudospin. We find that the interaction potential between the bosons involves terms that do not conserve pseudospin, corresponding to umklapp processes, which in some cases can also be seen as BCS-type pairing terms. We argue that in experimentally realistic regimes for bosonic atoms in optical lattices with synthetic magnetic fields, these terms are crucial for determining the nature of allowed ground states. In particular, we show numerically that certain paired wave functions related to the Moore-Read Pfaffian state are stabilized by these terms, whereas certain other wave functions can be destabilized when umklapp processes become strong. © 2012 American Physical Society.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • Current page 38
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet