Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Steve Simon

Professorial Research Fellow and Professorial Fellow of Somerville College

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
steven.simon@physics.ox.ac.uk
Telephone: 01865 (2)73954
Rudolf Peierls Centre for Theoretical Physics, room 70.06
  • About
  • Publications

A random matrix-theoretic approach to handling singular covariance estimates

IEEE Transactions on Information Theory 57:9 (2011) 6256-6271

Authors:

TL Marzetta, GH Tucci, SH Simon

Abstract:

In many practical situations we would like to estimate the covariance matrix of a set of variables from an insufficient amount of data. More specifically, if we have a set of N independent, identically distributed measurements of an M dimensional random vector the maximum likelihood estimate is the sample covariance matrix. Here we consider the case where N < M such that this estimate is singular (noninvertible) and therefore fundamentally bad. We present a radically new approach to deal with this situation based on the idea of dimensionality reduction through an ensemble of isotropically random unitary matrices. We obtain two estimates cov and invcov which are estimates for the covariance matrix and the inverse covariance matrix respectively. Both estimates retain the original eigenvectors while altering the eigenvalues. We have a closed form analytical expression for cov and invcov in terms of the eigenvector/eigenvalue decomposition of the sample covariance. We motivate the use of invcov through applications to linear estimation, supervised learning, and high-resolution spectral estimation. We also compare the performance of these estimators with other more conventional methods. © 2011 IEEE.
More details from the publisher
More details

A Typology for Quantum Hall Liquids

(2011)

Authors:

SA Parameswaran, SA Kivelson, EH Rezayi, SH Simon, SL Sondhi, BZ Spivak
More details from the publisher

Aharonov-Bohm-like oscillations in Fabry-Perot interferometers

New Journal of Physics 13 (2011)

Authors:

H Choi, P Jiang, MD Godfrey, W Kang, SH Simon, LN Pfeiffer, KW West, KW Baldwin

Abstract:

An experimental study of a Fabry-Perot interferometer in the quantum Hall regime reveals Aharonov-Bohm-like (ABL) oscillations. Unlike the Aharonov-Bohm effect, which has a period of one flux quantum, Φ0, ABL oscillations possess a flux period of Φ0/f, where/is the integral value of fully filled Landau levels in the constrictions. The detection of ABL oscillations is limited to the low magnetic field side of the vc = 1, 2, 4, 6,..., integer quantum Hall plateaus. These oscillations can be understood within the Coulombdominated model of quantum Hall interferometers as forward tunneling and backscattering, respectively, through the center of the interferometer from the bulk and the edge states. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
More details from the publisher
Details from ORA
More details

Condensation of achiral simple currents in topological lattice models: a Hamiltonian study of topological symmetry breaking

(2011)

Authors:

FJ Burnell, Steven H Simon, JK Slingerland
More details from the publisher

Breaking of particle-hole symmetry by landau level mixing in the ν=5/2 quantized hall state

Physical Review Letters 106:11 (2011)

Authors:

EH Rezayi, SH Simon

Abstract:

We perform numerical studies to determine if the fractional quantum Hall state observed at a filling factor of ν=5/2 is the Moore-Read wave function or its particle-hole conjugate, the so-called anti-Pfaffian. Using a truncated Hilbert space approach we find that, for realistic interactions, including Landau-level mixing, the ground state remains fully polarized and the anti-Pfaffian is strongly favored. © 2011 American Physical Society.
More details from the publisher
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • Current page 41
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet