Non-Abelian anyons and topological quantum computation
Reviews of Modern Physics 80:3 (2008) 1083-1159
Abstract:
Topological quantum computation has emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as non-Abelian anyons, meaning that they obey non-Abelian braiding statistics. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations that are necessary for quantum computation are carried out by braiding quasiparticles and then measuring the multiquasiparticle states. The fault tolerance of a topological quantum computer arises from the nonlocal encoding of the quasiparticle states, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the ν=5/2 state, although several other prospective candidates have been proposed in systems as disparate as ultracold atoms in optical lattices and thin-film superconductors. In this review article, current research in this field is described, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. Both the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the ν=5/2 fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation. © 2008 The American Physical Society.Theory of activated transport in hilayer quantum Hall systems
Physical Review Letters 101:4 (2008)
Abstract:
We analyze the transport properties of bilayer quantum Hall systems at total filling factor ν=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment. © 2008 The American Physical Society.Bulk-edge coupling in the non-Abelian ν=5/2 quantum hall interferometer
Physical Review Letters 100:22 (2008)
Abstract:
Recent schemes for probing non-Abelian statistics in the quantum Hall effect are based on geometries where current-carrying quasiparticles flow along edges that encircle bulk quasiparticles, which are localized. Here we consider one such scheme, the Fabry-Perot interferometer, and analyze how its interference patterns are affected by a coupling that allows tunneling of neutral Majorana fermions between the bulk and edge. While at weak coupling this tunneling degrades the interference signal, we find that at strong coupling, the bulk quasiparticle becomes essentially absorbed by the edge and the intereference signal is fully restored. Furthermore, we find that the strength of the coupling can be tuned by the source-drain voltage. © 2008 The American Physical Society.Paired composite fermion phase of quantum Hall bilayers at \nu = 1/2 + 1/2
(2008)