Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Steve Simon

Professorial Research Fellow and Professorial Fellow of Somerville College

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
steven.simon@physics.ox.ac.uk
Telephone: 01865 (2)73954
Rudolf Peierls Centre for Theoretical Physics, room 70.06
  • About
  • Publications

Quantum computing with non-abelian quasiparticles

International Journal of Modern Physics B 21:8-9 (2007) 1372-1378

Authors:

NE Bonesteel, L Hormozi, G Zikos, SH Simon

Abstract:

In topological quantum computation quantum information is stored in exotic states of matter which are intrinsically protected from decoherence, and quantum operations are carried out by dragging particle-like excitations (quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories define world-lines in three dimensional space-time, and the corresponding quantum operations depend only on the topology of the braids formed by these world-lines. We describe recent work showing how to find braids which can be used to perform arbitrary quantum computations using a specific kind of quasiparticle (those described by the so-called Fibonacci anyon model) which are thought to exist in the experimentally observed v = 12/5 fractional quantum Hall state. © World Scientific Publishing Company.
More details from the publisher
More details

Construction of a paired wave function for spinless electrons at filling fraction ν=2/5

Physical Review B - Condensed Matter and Materials Physics 75:7 (2007)

Authors:

SH Simon, EH Rezayi, NR Cooper, I Berdnikov

Abstract:

We construct a wave function, generalizing the well-known Moore-Read Pfaffian, that describes spinless electrons at filling fraction ν=2/5 (or bosons at filling fraction ν=2/3) as the ground state of a very simple three body potential. We find, analogous to the Pfaffian, that when quasiholes are added there is a ground state degeneracy which can be identified as zero modes of the quasiholes. The zero modes are identified as having semionic statistics. We write this wave function as a correlator of the Virasoro minimal model conformal field theory M (5,3). Since this model is nonunitary, we conclude that this wave function is likely a quantum critical state. Nonetheless, we find that the overlaps of this wave function with exact diagonalizations in the lowest and first excited Landau level are very high, suggesting that this wave function may have experimental relevance for some transition that may occur in that regime. © 2007 The American Physical Society.
More details from the publisher
More details
Details from ArXiV

Generalized quantum Hall projection Hamiltonians

Physical Review B - Condensed Matter and Materials Physics 75:7 (2007)

Authors:

SH Simon, EH Rezayi, NR Cooper

Abstract:

Certain well known quantum Hall states-including the Laughlin states, the Moore-Read Pfaffian, and the Read-Rezayi Parafermion states-can be defined as the unique lowest degree symmetric analytic function that vanishes as at least p powers as some number (g+1) of particles approach the same point. Analogously, these same quantum Hall states can be generated as the exact highest density zero energy state of simple angular momentum projection operators. Following this theme we determine the highest density zero energy state for many other values of p and g. © 2007 The American Physical Society.
More details from the publisher
More details
Details from ArXiV

Pseudopotentials for Multi-particle Interactions in the Quantum Hall Regime

(2007)

Authors:

Steven H Simon, EH Rezayi, Nigel R Cooper
More details from the publisher

Capacity and character expansions: Moment-generating function and other exact results for MIMO correlated channels

IEEE Transactions on Information Theory 52:12 (2006) 5336-5351

Authors:

SH Simon, AL Moustakas, L Marinelli

Abstract:

A promising new method from the field of representations of Lie groups is applied to calculate integrals over unitary groups, which are important for multiantenna communications. To demonstrate the power and simplicity of this technique, a number of recent results are rederived, using only a few simple steps. In particular, we derive the joint probability distribution of eigenvalues of the matrix GG† with G a nonzero mean or a semicor-related Gaussian random matrix. These joint probability distribution functions can then be used to calculate the moment generating function of the mutual information for Gaussian multiple-input multiple-output (MIMO) channels with these probability distribution of their channel matrices G. We then turn to the previously unsolved problem of calculating the moment generating function of the mutual information of MIMO channels, which are correlated at both the receiver and the transmitter. From this moment generating function we obtain the ergodic average of the mutual information and study the outage probability. These methods can be applied to a number of other problems. As a particular example, we examine unitary encoded space-time transmission of MIMO systems and we derive the received signal distribution when the channel matrix is correlated at the transmitter end. © 2006 IEEE.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • Current page 52
  • Page 53
  • Page 54
  • Page 55
  • Page 56
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet