Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
CMP
Credit: Jack Hobhouse

Siyu Yan

PDRA in Novel Semiconductor Synthesis and Characterisation

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Terahertz photonics
  • Novel Energy Materials and Advanced Characterisation
siyu.yan@physics.ox.ac.uk
Telephone: 72339
Clarendon Laboratory, room R245
  • About
  • Publications

Inter‐Layer Diffusion of Excitations in 2D Perovskites Revealed by Photoluminescence Reabsorption

Advanced Functional Materials Wiley (2025) 2421817

Authors:

Jiaxing Du, Marcello Righetto, Manuel Kober‐Czerny, Siyu Yan, Karim A Elmestekawy, Henry J Snaith, Michael B Johnston, Laura M Herz

Abstract:

2D lead halide perovskites (2DPs) offer chemical compatibility with 3D perovskites and enhanced stability, which are attractive for applications in photovoltaic and light‐emitting devices. However, such lowered structural dimensionality causes increased excitonic effects and highly anisotropic charge‐carrier transport. Determining the diffusivity of excitations, in particular for out‐of‐plane or inter‐layer transport, is therefore crucial, yet challenging to achieve. Here, an effective method is demonstrated for monitoring inter‐layer diffusion of photoexcitations in (PEA)2PbI4 thin films by tracking time‐dependent changes in photoluminescence spectra induced by photon reabsorption effects. Selective photoexcitation from either substrate‐ or air‐side of the films reveals differences in diffusion dynamics encountered through the film profile. Time‐dependent diffusion coefficients are extracted from spectral dynamics through a 1D diffusion model coupled with an interference correction for refractive index variations arising from the strong excitonic resonance of 2DPs. Such analysis, together with structural probes, shows that minute misalignment of 2DPs planes occurs at distances far from the substrate, where efficient in‐plane transport consequently overshadows the less efficient out‐of‐plane transport in the direction perpendicular to the substrate. Through detailed analysis, a low out‐of‐plane excitation diffusion coefficient of (0.26 ± 0.03) ×10−4 cm2 s−1 is determined, consistent with a diffusion anisotropy of ≈4 orders of magnitude.
More details from the publisher
Details from ORA
More details

Search for pair-produced higgsinos decaying via Higgs or 𝒁 bosons to final states containing a pair of photons and a pair of 𝒃-jets with the ATLAS detector

Physics Letters B Elsevier 856 (2024) 138938

Authors:

Alan Barr, Daniela Bortoletto, Federico Celli, Min Chen, Eimear Conroy, Amanda Cooper-Sarkar, Maxence Draguet, Gregor Eberwein, James Frost, Elizabeth Gallas, Claire Gwenlan, Christopher Hays, Brian Huffman, Simon Koch, Zhenlong Li, Koichi Nagai, Luka Nedic, Richard Nickerson, Eleonora Rossi, Alessandro Ruggiero, Elisabeth Schopf, Ian Shipsey, Iza Veliscek, Georg Viehhauser, Yajing Wei, Anthony Weidberg, Siyu Yan

Abstract:

A search is presented for the pair production of higgsinos 𝜒˜ in gauge-mediated supersymmetry models, where the lightest neutralinos 𝜒˜ 0 1 decay into a light gravitino 𝐺˜ either via a Higgs ℎ or 𝑍 boson. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 fb−1 of proton–proton collisions at a centre-of-mass energy of √ 𝑠 = 13 TeV. It targets final states in which a Higgs boson decays into a photon pair, while the other Higgs or 𝑍 boson decays into a 𝑏𝑏¯ pair, with missing transverse momentum associated with the two gravitinos. Search regions dependent on the amount of missing transverse momentum are defined by the requirements that the diphoton mass should be consistent with the mass of the Higgs boson, and the 𝑏𝑏¯ mass with the mass of the Higgs or 𝑍 boson. The main backgrounds are estimated with data-driven methods using the sidebands of the diphoton mass distribution. No excesses beyond Standard Model expectations are observed and higgsinos with masses up to 320 GeV are excluded, assuming a branching fraction of 100% for 𝜒˜ 0 1 → ℎ𝐺˜. This analysis excludes higgsinos with masses of 130 GeV for branching fractions to ℎ𝐺˜ as low as 36%, thus providing complementarity to previous ATLAS searches in final states with multiple leptons or multiple 𝑏-jets, targeting different decays of the electroweak bosons.
More details from the publisher
Details from ORA
More details

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet