Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

Gas flows in the circumgalactic medium around simulated high-redshift galaxies

(2017)

Authors:

Peter Mitchell, Jeremy Blaizot, Julien Devriendt, Taysun Kimm, Leo Michel-Dansac, Joakim Rosdahl, Adrianne Slyz
More details from the publisher

Cosmic evolution of stellar quenching by AGN feedback: clues from the Horizon-AGN simulation

Monthly Notices of the Royal Astronomical Society Oxford University Press 472:1 (2017) 949-965

Authors:

Ricarda S Beckmann, Julien Devriendt, Adrianne D Slyz, S Peirani, Mark LA Richardson, Y Dubois, C Pichon, Nora E Chisari, S Kaviraj, Clotilde MC Laigle, M Volonteri

Abstract:

The observed massive end of the local galaxy stellar mass function is steeper than its predicted dark matter (DM) halo counterpart in the standard $\Lambda $CDM paradigm. We investigate how active galactic nuclei (AGN) feedback can account for such a reduction in the stellar content of massive galaxies, through an influence on the gas content of their interstellar (ISM) and circum-galactic medium (CGM). We isolate the impact of AGNs by comparing two simulations from the HORIZON suite, which are identical except that one includes super massive black holes (SMBH) and related feedback. This allows us to cross-identify individual galaxies between these simulations and quantify the effect of AGN feedback on their properties, such as stellar mass and gas outflows. We find that the most massive galaxies ($ \rm M_{*} \geq 3 \times 10^{11} M_\odot $) are quenched to the extent that their stellar masses decrease by about 80% at $z=0$. More generally, SMBHs affect their host halo through a combination of outflows that reduce their baryonic mass, particularly for galaxies in the mass range $ \rm 10^9 M_\odot \leq M_{*} \leq 10^{11} M_\odot $, and a disruption of central gas inflows, which limits in-situ star formation, particularly massive galaxies with $ \rm M_{*} \approx10^{11} M_\odot $. As a result of these processes, net gas inflows onto massive galaxies drop by up to 70%. Finally, we measure a redshift evolution in the stellar mass ratio of twin galaxies with and without AGN feedback, with galaxies of a given stellar mass showing stronger signs of quenching earlier on. This evolution is driven by a progressive flattening of the $\rm M_{SMBH}-M_* $ relation for galaxies with $\rm M_{*} \leq 10^{10} M_\odot $ as redshift decreases, which translates into smaller SBMHs being harboured by galaxies of any fixed stellar mass, and indicates stronger AGN feedback at higher redshift.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies

(2017)

Authors:

Maxime Trebitsch, Jérémy Blaizot, Joakim Rosdahl, Julien Devriendt, Adrianne Slyz
More details from the publisher

Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 470:1 (2017) 224-239

Authors:

M Trebitsch, J Blaizot, J Rosdahl, Julien Devriendt, Adrienne Slyz

Abstract:

Low-mass galaxies are thought to provide the bulk of the ionizing radiation necessary to reionize the Universe. The amount of photons escaping the galaxies is poorly constrained theoretically, and difficult to measure observationally. Yet it is an essential parameter of reionization models.We study in detail how ionizing radiation can leak from high-redshift galaxies. For this purpose, we use a series of high-resolution radiation hydrodynamics simulations, zooming on three dwarf galaxies in a cosmological context. We find that the energy and momentum input from the supernova explosions has a pivotal role in regulating the escape fraction by disrupting dense star-forming clumps, and clearing sightlines in the halo. In the absence of supernovae, photons are absorbed very locally, within the birth clouds of massive stars. We follow the time evolution of the escape fraction and find that it can vary by more than six orders of magnitude. This explains the large scatter in the value of the escape fraction found by previous studies. This fast variability also impacts the observability of the sources of reionization: a survey even as deep as M 1500 = -14 would miss about half of the underlying population of Lyman-continuum emitters.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties

(2017)

Authors:

Clotilde Laigle, Christophe Pichon, Stephane Arnouts, Henry Joy McCracken, Yohan Dubois, Julien Devriendt, Adrianne Slyz, Damien Le Borgne, Aurelien Benoit-Levy, Ho Seong Hwang, Olivier Ilbert, Katarina Kraljic, Nicola Malavasi, Changbom Park, Didier Vibert
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • Current page 24
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet