Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

How the cosmic web induces intrinsic alignments of galaxies

Proceedings of the International Astronomical Union Cambridge University Press 11:S308 (2016) 437-442

Authors:

S Codis, Y Dubois, C Pichon, Julien Devriendt, Adrianne Slyz

Abstract:

Intrinsic alignments are believed to be a major source of systematics for future generation of weak gravitational lensing surveys like Euclid or LSST. Direct measurements of the alignment of the projected light distribution of galaxies in wide field imaging data seem to agree on a contamination at a level of a few per cent of the shear correlation functions, although the amplitude of the effect depends on the population of galaxies considered. Given this dependency, it is difficult to use dark matter-only simulations as the sole resource to predict and control intrinsic alignments. We report here estimates on the level of intrinsic alignment in the cosmological hydrodynamical simulation Horizon-AGN that could be a major source of systematic errors in weak gravitational lensing measurements. In particular, assuming that the spin of galaxies is a good proxy for their ellipticity, we show how those spins are spatially correlated and how they couple to the tidal field in which they are embedded. We also present theoretical calculations that illustrate and qualitatively explain the observed signals.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Feedback-regulated star formation and escape of LyC photons from mini-haloes during reionisation

(2016)

Authors:

Taysun Kimm, Harley Katz, Martin Haehnelt, Joakim Rosdahl, Julien Devriendt, Adrianne Slyz
More details from the publisher

Bursty star formation feedback and cooling outflows

(2016)

Authors:

Teresita Suarez, Andrew Pontzen, Hiranya V Peiris, Adrianne Slyz, Julien Devriendt
More details from the publisher

COMPARING SIMULATIONS OF AGN FEEDBACK

ASTROPHYSICAL JOURNAL 825:2 (2016) ARTN 83

Authors:

MLA Richardson, E Scannapieco, J Devriendt, A Slyz, RJ Thacker, Y Dubois, J Wurster, J Silk
More details from the publisher
Details from ORA
More details
Details from ArXiV

Bursty star formation feedback and cooling outflows

Monthly Notices of the Royal Astronomical Society Oxford University Press 462:1 (2016) 994-1001

Authors:

Teresita Suarez, Andrew Pontzen, Hiranya V Peiris, Adrianne Slyz, Julien Devriendt

Abstract:

We study how outflows of gas launched from a central galaxy undergoing repeated starbursts propagate through the circumgalactic medium (CGM), using the simulation code RAMSES. We assume that the outflow from the disk can be modelled as a rapidly moving bubble of hot gas at ~ 1 kpc above disk, then ask what happens as it moves out further into the halo around the galaxy on ~ 100 kpc scales. To do this we run 60 two-dimensional simulations scanning over parameters of the outflow. Each of these is repeated with and without radiative cooling, assuming a primordial gas composition to give a lower bound on the importance of cooling. In a large fraction of radiative-cooling cases we are able to form rapidly outflowing cool gas from in situ cooling of the flow. We show that the amount of cool gas formed depends strongly on the ‘burstiness’ of energy injection; sharper, stronger bursts typically lead to a larger fraction of cool gas forming in the outflow. The abundance ratio of ions in the CGM may therefore change in response to the detailed historical pattern of star formation. For instance, outflows generated by star formation with short, intense bursts contain up to 60 per cent of their gas mass at temperatures < 5 X 10^4 K; for near-continuous star formation the figure is ≲ 5 per cent. Further study of cosmological simulations, and of idealised simulations with e.g., metal-cooling, magnetic fields and/or thermal conduction, will help to understand the precise signature of bursty outflows on observed ion abundances.

More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • Current page 26
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet