Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties

Monthly Notices of the Royal Astronomical Society Oxford University Press 474:4 (2017) 5437-5458

Authors:

Clotilde Laigle, C Pichon, S Arnouts, HJ McCracken, Y Dubois, Julien Devriendt, Adrianne Slyz, D Le Borgne, A Benoit-Levy, Ho Seong Hwang, O Ilbert, K Kraljic, N Malavasi, C Park, D Vibert

Abstract:

The variation of galaxy stellar masses and colour types with the distance to projected cosmic filaments are quantified using the precise photometric redshifts of the COSMOS2015 catalogue extracted from Cosmological Evolution Survey (COSMOS) field (2 deg2). Realistic mock catalogues are also extracted from the lightcone of the cosmological hydrodynamical simulation Horizon-AGN. They show that the photometric redshift accuracy of the observed catalogue (σz < 0.015 at M* > 1010M⊙ and z < 0.9) is sufficient to provide two-dimensional (2D) filaments that closely match their projected three-dimensional (3D) counterparts. Transverse stellar mass gradients are measured in projected slices of thickness 75 Mpc between 0.5 < z < 0.9, showing that the most massive galaxies are statistically closer to their neighbouring filament. At fixed stellar mass, passive galaxies are also found closer to their filament, while active star-forming galaxies statistically lie further away. The contributions of nodes and local density are removed from these gradients to highlight the specific role played by the geometry of the filaments. We find that the measured signal does persist after this removal, clearly demonstrating that proximity to a filament is not equivalent to proximity to an overdensity. These findings are in agreement with gradients measured in both 2D and 3D in the Horizon-AGN simulation and those observed in the spectroscopic surveys VIPERS and GAMA (which both rely on the identification of 3D filaments). They are consistent with a picture in which the influence of the geometry of the large-scale environment drives anisotropic tides that impact the assembly history of galaxies, and hence their observed properties.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Gas flows in the circumgalactic medium around simulated high-redshift galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 474:4 (2017) 4279-4301

Authors:

PD Mitchell, J Blaizot, Julien Devriendt, T Kimm, L Michel-Dansac, J Rosdahl, Adrianne Slyz

Abstract:

We analyse the properties of circumgalactic gas around simulated galaxies in the redshift range z ≥ 3, utilizing a new sample of cosmological zoom simulations. These simulations are intended to be representative of the observed samples of Lyman α (Ly α) emitters recently obtained with the multi unit spectroscopic explorer (MUSE) instrument (halo masses ~ 10 10 - 10 11 M⊙). We show that supernova feedback has a significant impact on both the inflowing and outflowing circumgalactic medium (CGM) by driving outflows, reducing diffuse inflow rates, and by increasing the neutral fraction of inflowing gas. By temporally stacking simulation outputs, we find that significant net mass exchange occurs between inflowing and outflowing phases: none of the phases are mass-conserving. In particular, we find that the mass in neutral outflowing hydrogen declines exponentially with radius as gas flows outwards from the halo centre. This is likely caused by a combination of both fountain-like cycling processes and gradual photoionization/collisional ionization of outflowing gas. Our simulations do not predict the presence of fast-moving neutral outflows in the CGM. Neutral outflows instead move with modest radial velocities (~ 50 km s -1 ), and the majority of the kinetic energy is associated with tangential rather than radial motion.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Gas flows in the circumgalactic medium around simulated high-redshift galaxies

(2017)

Authors:

Peter Mitchell, Jeremy Blaizot, Julien Devriendt, Taysun Kimm, Leo Michel-Dansac, Joakim Rosdahl, Adrianne Slyz
More details from the publisher

Cosmic evolution of stellar quenching by AGN feedback: clues from the Horizon-AGN simulation

Monthly Notices of the Royal Astronomical Society Oxford University Press 472:1 (2017) 949-965

Authors:

Ricarda S Beckmann, Julien Devriendt, Adrianne D Slyz, S Peirani, Mark LA Richardson, Y Dubois, C Pichon, Nora E Chisari, S Kaviraj, Clotilde MC Laigle, M Volonteri

Abstract:

The observed massive end of the local galaxy stellar mass function is steeper than its predicted dark matter (DM) halo counterpart in the standard $\Lambda $CDM paradigm. We investigate how active galactic nuclei (AGN) feedback can account for such a reduction in the stellar content of massive galaxies, through an influence on the gas content of their interstellar (ISM) and circum-galactic medium (CGM). We isolate the impact of AGNs by comparing two simulations from the HORIZON suite, which are identical except that one includes super massive black holes (SMBH) and related feedback. This allows us to cross-identify individual galaxies between these simulations and quantify the effect of AGN feedback on their properties, such as stellar mass and gas outflows. We find that the most massive galaxies ($ \rm M_{*} \geq 3 \times 10^{11} M_\odot $) are quenched to the extent that their stellar masses decrease by about 80% at $z=0$. More generally, SMBHs affect their host halo through a combination of outflows that reduce their baryonic mass, particularly for galaxies in the mass range $ \rm 10^9 M_\odot \leq M_{*} \leq 10^{11} M_\odot $, and a disruption of central gas inflows, which limits in-situ star formation, particularly massive galaxies with $ \rm M_{*} \approx10^{11} M_\odot $. As a result of these processes, net gas inflows onto massive galaxies drop by up to 70%. Finally, we measure a redshift evolution in the stellar mass ratio of twin galaxies with and without AGN feedback, with galaxies of a given stellar mass showing stronger signs of quenching earlier on. This evolution is driven by a progressive flattening of the $\rm M_{SMBH}-M_* $ relation for galaxies with $\rm M_{*} \leq 10^{10} M_\odot $ as redshift decreases, which translates into smaller SBMHs being harboured by galaxies of any fixed stellar mass, and indicates stronger AGN feedback at higher redshift.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies

(2017)

Authors:

Maxime Trebitsch, Jérémy Blaizot, Joakim Rosdahl, Julien Devriendt, Adrianne Slyz
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • Current page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet