Galactic star formation in parsec-scale resolution simulations
(2010)
The skeleton: Connecting large scale structures to galaxy formation
AIP Conference Proceedings 1241 (2010) 1108-1117
Abstract:
We report on two quantitative, morphological estimators of the filamentary structure of the Cosmic Web, the so-called global and local skeletons. The first, based on a global study of the matter density gradient flow, allows us to study the connectivity between a density peak and its surroundings, with direct relevance to the anisotropic accretion via cold flows on galactic halos. From the second, based on a local constraint equation involving the derivatives of the field, we can derive predictions for powerful statistics, such as the differential length and the relative saddle to extrema counts of the Cosmic web as a function of density threshold (with application to percolation of structures and connectivity), as well as a theoretical framework to study their cosmic evolution through the onset of gravity-induced non-linearities. © 2010 American Institute of Physics.Jet-regulated cooling catastrophe
ArXiv 1004.1851 (2010)
Abstract:
We present the first implementation of Active Galactic Nuclei (AGN) feedback in the form of momentum driven jets in an Adaptive Mesh Refinement (AMR) cosmological resimulation of a galaxy cluster. The jets are powered by gas accretion onto Super Massive Black Holes (SMBHs) which also grow by mergers. Throughout its formation, the cluster experiences different dynamical states: both a morphologically perturbed epoch at early times and a relaxed state at late times allowing us to study the different modes of BH growth and associated AGN jet feedback. BHs accrete gas efficiently at high redshift (z>2), significantly pre-heating proto-cluster halos. Gas-rich mergers at high redshift also fuel strong, episodic jet activity, which transports gas from the proto-cluster core to its outer regions. At later times, while the cluster relaxes, the supply of cold gas onto the BHs is reduced leading to lower jet activity. Although the cluster is still heated by this activity as sound waves propagate from the core to the virial radius, the jets inefficiently redistribute gas outwards and a small cooling flow develops, along with low-pressure cavities similar to those detected in X-ray observations. Overall, our jet implementation of AGN feedback quenches star formation quite efficiently, reducing the stellar content of the central cluster galaxy by a factor 3 compared to the no AGN case. It also dramatically alters the shape of the gas density profile, bringing it in close agreement with the beta model favoured by observations, producing quite an isothermal galaxy cluster for gigayears in the process. However, it still falls short in matching the lower than Universal baryon fractions which seem to be commonplace in observed galaxy clusters.A Galaxy in the Making
NUMERICAL MODELING OF SPACE PLASMA FLOWS ASTRONUM-2009 429 (2010) 154-159