Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

Building Merger Trees from Cosmological N-body Simulations

(2009)

Authors:

D Tweed, J Devriendt, J Blaizot, S Colombi, A Slyz
More details from the publisher

Cooling, gravity, and geometry: Flow-driven massive core formation

Astrophysical Journal 674:1 (2008) 316-328

Authors:

F Heitsch, LW Hartmann, AD Slyz, JEG Devriendt, A Burkert

Abstract:

We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds up large-scale filaments, while local gravity, triggered by a combination of strong thermal and dynamical instabilities, causes cores to form. The dynamical instabilities give rise to a local focusing of the colliding flows, facilitating the rapid formation of massive protostellar cores of a few hundred M⊙. The forming clouds do not reach an equilibrium state, although the motions within the clouds appear to be comparable to virial. The self-similar core mass distributions derived from models with and without self-gravity indicate that the core mass distribution is set very early on during the cloud formation process, predominantly by a combination of thermal and dynamical instabilities rather than by self-gravity. © 2008. The American Astronomical Society. All rights reserved.
More details from the publisher
More details

Cooling, Gravity and Geometry: Flow-driven Massive Core Formation

ArXiv 0709.2451 (2007)

Authors:

Fabian Heitsch, Lee Hartmann, Adrianne D Slyz, Julien EG Devriendt, Andreas Burkert

Abstract:

We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds up large-scale filaments, while local gravity -- triggered by a combination of strong thermal and dynamical instabilities -- causes cores to form. The dynamical instabilities give rise to a local focusing of the colliding flows, facilitating the rapid formation of massive protostellar cores of a few 100 M$_\odot$. The forming clouds do not reach an equilibrium state, though the motions within the clouds appear comparable to ``virial''. The self-similar core mass distributions derived from models with and without self-gravity indicate that the core mass distribution is set very early on during the cloud formation process, predominantly by a combination of thermal and dynamical instabilities rather than by self-gravity.
Details from ArXiV
More details from the publisher
Details from ORA
More details

Cooling, Gravity and Geometry: Flow-driven Massive Core Formation

(2007)

Authors:

Fabian Heitsch, Lee Hartmann, Adrianne D Slyz, Julien EG Devriendt, Andreas Burkert
More details from the publisher

Magnetized nonlinear thin-shell instability: Numerical studies in two dimensions

Astrophysical Journal 665:1 PART 1 (2007) 445-456

Authors:

F Heitsch, AD Slyz, JEG Devriendt, LW Hartmann, A Burkert

Abstract:

We revisit the analysis of the nonlinear thin shell instability (NTSI) numerically, including magnetic fields. The magnetic tension force is expected to work against the main driver of the NTSI - namely, transverse momentum transport. However, depending on the field strength and orientation, the instability may grow. For fields aligned with the inflow, we find that the NTSI is suppressed only when the Alfvén speed surpasses the (supersonic) velocities generated along the collision interface. Even for fields perpendicular to the inflow, which are the most effective at preventing the NTSI from developing, internal structures form within the expanding slab interface, probably leading to fragmentation in the presence of self-gravity or thermal instabilities. High Reynolds numbers result in local turbulence within the perturbed slab, which in turn triggers reconnection and dissipation of the excess magnetic flux. We find that when the magnetic field is initially aligned with the flow, there exists a (weak) correlation between field strength and gas density. However, for transverse fields, this correlation essentially vanishes. In light of these results, our general conclusion is that instabilities are unlikely to be erased unless the magnetic energy in clouds is much larger than the turbulent energy. Finally, while our study is motivated by the scenario of molecular cloud formation in colliding flows, our results span a larger range of applicability, from supernova shells to colliding stellar winds. © 2007. The American Astronomical Society. All rights reserved.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Current page 43
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet