Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

The impact of supernovae driven winds on stream-fed protogalaxies

ArXiv 1012.2839 (2010)

Authors:

Leila C Powell, Adrianne Slyz, Julien Devriendt

Abstract:

SNe driven winds are widely thought to be very influential in the high-redshift Universe, shaping the properties of the circum-galactic medium, enriching the IGM with metals and driving the evolution of low-mass galaxies. However, it is not yet fully understood how SNe driven winds interact with their surroundings in a cosmological context, nor is it clear whether they are able to significantly impact the evolution of low-mass galaxies from which they originate by altering the amount of cold material these accrete from the cosmic web. We implement a standard Taylor-Sedov type solution, widely used in the community to depict the combined action of many SN explosions, in a cosmological resimulation of a low mass galaxy at z =9 from the 'Nut' suite. However, in contrast with previous work, we achieve a resolution high enough to capture individual SN remnants in the Taylor-Sedov phase, for which the solution provides an accurate description of the expansion. We report the development of a high-velocity, far-reaching galactic wind produced by the combined action of SNe in the main galaxy and its satellites, which are located in the same or a neighbouring dark matter halo. Despite this, we find that (i) this wind carries out very little mass (the measured outflow is of the order of a tenth of the inflow/star formation rate) and (ii) the cold gas inflow rate remains essentially unchanged from the run without SNe feedback. Moreover, there are epochs during which star formation is enhanced in the feedback run relative to its radiative cooling only counterpart. We attribute this 'positive' feedback to the metal enrichment that is present only in the former. We conclude that at very high redshift, efficient SNe feedback can drive large-scale galactic winds but does not prevent massive cold gas inflow from fuelling galaxies, resulting in long-lived episodes of intense star formation.(abridged)
Details from ArXiV
More details from the publisher
More details

The impact of supernovae driven winds on stream-fed protogalaxies

(2010)

Authors:

Leila C Powell, Adrianne Slyz, Julien Devriendt
More details from the publisher

The impact of ISM turbulence, clustered star formation and feedback on galaxy mass assembly through cold flows and mergers

Proceedings of the International Astronomical Union 6:S277 (2010) 234-237

Authors:

LC Powell, F Bournaud, D Chapon, J Devriendt, A Slyz, R Teyssier

Abstract:

Two of the dominant channels for galaxy mass assembly are cold flows (cold gas supplied via the filaments of the cosmic web) and mergers. How these processes combine in a cosmological setting, at both low and high redshift, to produce the whole zoo of galaxies we observe is largely unknown. Indeed there is still much to understand about the detailed physics of each process in isolation. While these formation channels have been studied using hydrodynamical simulations, here we study their impact on gas properties and star formation (SF) with some of the first from simulations that capture the multiphase, cloudy nature of the interstellar medium (ISM), by virtue of their high spatial resolution (and corresponding low temperature threshold). In this regime, we examine the competition between cold flows and a supernovae(SNe)-driven outflow in a very high-redshift galaxy (z ≈ 9) and study the evolution of equal-mass galaxy mergers at low and high redshift, focusing on the induced SF. We find that SNe-driven outflows cannot reduce the cold accretion at z ≈ 9 and that SF is actually enhanced due to the ensuing metal enrichment. We demonstrate how several recent observational results on galaxy populations (e.g. enhanced HCN/CO ratios in ULIRGs, a separate Kennicutt Schmidt (KS) sequence for starbursts and the population of compact early type galaxies (ETGs) at high redshift) can be explained with mechanisms captured in galaxy merger simulations, provided that the multiphase nature of the ISM is resolved. © Copyright International Astronomical Union 2011.
More details from the publisher

Are cold flows detectable with metal absorption lines?

ArXiv 1012.0059 (2010)

Authors:

Taysun Kimm, Adrianne Slyz, Julien Devriendt, Christophe Pichon

Abstract:

[Abridged] Cold gas flowing within the "cosmic web" is believed to be an important source of fuel for star formation at high redshift. However, the presence of such filamentary gas has never been observationally confirmed. In this work, we investigate in detail whether such cold gas is detectable using low-ionisation metal absorption lines, such as CII \lambda1334 as this technique has a proven observational record for detecting gaseous structures. Using a large statistical sample of galaxies from the Mare Nostrum N-body+AMR cosmological simulation, we find that the typical covering fraction of the dense, cold gas in 10^12 Msun haloes at z~2.5 is lower than expected (~5%). In addition, the absorption signal by the interstellar medium of the galaxy itself turns out to be so deep and so broad in velocity space that it completely drowns that of the filamentary gas. A detectable signal might be obtained from a cold filament exactly aligned with the line of sight, but this configuration is so unlikely that it would require surveying an overwhelmingly large number of candidate galaxies to tease it out. Finally, the predicted metallicity of the cold gas in filaments is extremely low (\leq 0.001 Zsun). Should this result persist when higher resolution runs are performed, it would significantly increase the difficulty of detecting filamentary gas inflows using metal lines. However, even if we assume that filaments are enriched to Zsun, the absorption signal that we compute is still weak. We are therefore led to conclude that it is extremely difficult to observationally prove or disprove the presence of cold filaments as the favorite accretion mode of galaxies using low-ionisation metal absorption lines. The Ly-alpha emission route looks more promising but due to the resonant nature of the line, radiative transfer simulations are required to fully characterize the observed signal.
Details from ArXiV
More details from the publisher
More details

Are cold flows detectable with metal absorption lines?

(2010)

Authors:

Taysun Kimm, Adrianne Slyz, Julien Devriendt, Christophe Pichon
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • Current page 39
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet