Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

Jet-regulated cooling catastrophe

ArXiv 1004.1851 (2010)

Authors:

Yohan Dubois, Julien Devriendt, Adrianne Slyz, Romain Teyssier

Abstract:

We present the first implementation of Active Galactic Nuclei (AGN) feedback in the form of momentum driven jets in an Adaptive Mesh Refinement (AMR) cosmological resimulation of a galaxy cluster. The jets are powered by gas accretion onto Super Massive Black Holes (SMBHs) which also grow by mergers. Throughout its formation, the cluster experiences different dynamical states: both a morphologically perturbed epoch at early times and a relaxed state at late times allowing us to study the different modes of BH growth and associated AGN jet feedback. BHs accrete gas efficiently at high redshift (z>2), significantly pre-heating proto-cluster halos. Gas-rich mergers at high redshift also fuel strong, episodic jet activity, which transports gas from the proto-cluster core to its outer regions. At later times, while the cluster relaxes, the supply of cold gas onto the BHs is reduced leading to lower jet activity. Although the cluster is still heated by this activity as sound waves propagate from the core to the virial radius, the jets inefficiently redistribute gas outwards and a small cooling flow develops, along with low-pressure cavities similar to those detected in X-ray observations. Overall, our jet implementation of AGN feedback quenches star formation quite efficiently, reducing the stellar content of the central cluster galaxy by a factor 3 compared to the no AGN case. It also dramatically alters the shape of the gas density profile, bringing it in close agreement with the beta model favoured by observations, producing quite an isothermal galaxy cluster for gigayears in the process. However, it still falls short in matching the lower than Universal baryon fractions which seem to be commonplace in observed galaxy clusters.
Details from ArXiV
More details from the publisher
More details

Jet-regulated cooling catastrophe

(2010)

Authors:

Yohan Dubois, Julien Devriendt, Adrianne Slyz, Romain Teyssier
More details from the publisher

A Galaxy in the Making

NUMERICAL MODELING OF SPACE PLASMA FLOWS ASTRONUM-2009 429 (2010) 154-159

Authors:

Adrianne Slyz, Julien Devriendt, Leila Powell
More details

Modeling high-redshift galaxies: what can we learn from high and ultra-high resolution hydrodynamical simulations?

STELLAR POPULATIONS: PLANNING FOR THE NEXT DECADE (2010) 248-+

Authors:

J Devriendt, A Slyz, L Powell, C Pichon, R Teyssier
More details from the publisher

The dusty, albeit ultraviolet bright infancy of galaxies

ArXiv 0912.0376 (2009)

Authors:

J Devriendt, C Rimes, C Pichon, R Teyssier, D Le Borgne, D Aubert, E Audit, S Colombi, S Courty, Y Dubois, S Prunet, Y Rasera, A Slyz, D Tweed

Abstract:

The largest galaxies acquire their mass early on, when the Universe is still youthful. Cold streams violently feed these young galaxies a vast amount of fresh gas, resulting in very efficient star formation. Using a well resolved hydrodynamical simulation of galaxy formation, we demonstrate that these mammoth galaxies are already in place a couple of billion years after the Big Bang. Contrary to local starforming galaxies, where dust re-emits a large part of the stellar ultraviolet (UV) light at infrared and sub-millimetre wavelengths, our self-consistent modelling of dust extinction predicts that a substantial fraction of UV photons should escape from primordial galaxies. Such a model allows us to compute reliably the number of high redshift objects as a function of luminosity, and yields galaxies whose UV luminosities closely match those measured in the deepest observational surveys available. This agreement is remarkably good considering our admittedly still simple modelling of the interstellar medium (ISM) physics. The luminosity functions (LF) of virtual UV luminous galaxies coincide with the existing data over the whole redshift range from 4 to 7, provided cosmological parameters are set to their currently favoured values. Despite their considerable emission at short wavelengths, we anticipate that the counterparts of the brightest UV galaxies will be detected by future sub-millimetre facilities like ALMA
Details from ArXiV
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • Current page 42
  • Page 43
  • Page 44
  • Page 45
  • Page 46
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet