Observation of annealing-induced doping in tio2 mesoporous single crystals for use in solid state dye sensitized solar cells
Journal of Physical Chemistry C 118:4 (2014) 1821-1827
Abstract:
Mesoporous single crystals (MSCs) of TiO2 are promising materials for more efficient dye sensitized solar cells and other energy conversion or storage devices, since they combine high surface area with large crystalline domain size. In this work, we investigate the charge transport properties of TiO2 MSCs after annealing them within a confining template at temperatures from 500 to 850 C. We observe that higher anneal temperatures do not change the crystal phase, as in nanocrystalline TiO 2, but do influence the MSC absorption spectrum in a manner consistent with the signature of increased oxygen-vacancy defects. By comparing MSC film conductivity in vacuum and in air, we infer that these anneal-induced defects increase the background charge density in TiO2. Subsequently, we measure higher effective mobility in annealed MSCs using transient mobility spectroscopy (TMS), consistent with higher anneal temperatures filling sub-bandgap trap states by n-doping TiO2. Finally, we measure faster charge transport rates in solid-state dye sensitized solar cells as well as increased open-circuit voltages at low light intensity with increasing MSC anneal temperature. This study leverages the fixed geometry and crystal phase of MSCs under thermal treatment to identify and isolate the doping effect of annealing at high temperature, previously inaccessible for mesoporous anatase TiO2. The results offer insight into the influence of doping on charge transport in TiO2-based solar cells and the tunability of MSCs for use in enhancing device performance. © 2013 American Chemical Society.Neutral color semitransparent microstructured perovskite solar cells.
ACS Nano 8:1 (2014) 591-598
Abstract:
Neutral-colored semitransparent solar cells are commercially desired to integrate solar cells into the windows and cladding of buildings and automotive applications. Here, we report the use of morphological control of perovskite thin films to form semitransparent planar heterojunction solar cells with neutral color and comparatively high efficiencies. We take advantage of spontaneous dewetting to create microstructured arrays of perovskite "islands", on a length-scale small enough to appear continuous to the eye yet large enough to enable unattenuated transmission of light between the islands. The islands are thick enough to absorb most visible light, and the combination of completely absorbing and completely transparent regions results in neutral transmission of light. Using these films, we fabricate thin-film solar cells with respectable power conversion efficiencies. Remarkably, we find that such discontinuous films still have good rectification behavior and relatively high open-circuit voltages due to the inherent rectification between the n- and p-type charge collection layers. Furthermore, we demonstrate the ease of "color-tinting" such microstructured perovksite solar cells with no reduction in performance, by incorporation of a dye within the hole transport medium.Influence of ionizing dopants on charge transport in organic semiconductors.
Phys Chem Chem Phys 16:3 (2014) 1132-1138
Abstract:
Ionizing chemical dopants are widely used in organic semiconductors to enhance the charge transport properties by increasing the number of mobile charge carriers. However, together with mobile charges, chemical doping produces anion-cation pairs in the organic matrix. In this work we use experimental and computational analysis to study the influence of these ionic species on the charge transport. We show that the anion-cation pairs introduced upon doping have a detrimental, doping-level dependent effect on charge mobility. For doping levels of 0.02-0.05% molar ratio with respect to the molecular organic semiconductor, the increase in conductivity from the extra mobile charges is partially cancelled by a reduction in charge mobility from traps introduced by the anion-cation pairs. As the doping concentration increases, anion-cation pairs start to overlap, resulting in a comparatively smoother potential landscape, which increases the charge mobility to values closer to the undoped semiconductor. This result has a significant, practical impact, as it shows the need to dope at or slightly above a threshold level, which depends on the specific host-dopant combination.The raman spectrum of the CH3 NH3 PbI3 hybrid perovskite: Interplay of theory and experiment
Journal of Physical Chemistry Letters 5:2 (2014) 279-284
Abstract:
We report the low-frequency resonant Raman spectrum of methylammonium lead-iodide, a prototypical perovskite for solar cells applications, on mesoporous Al2O3. The measured spectrum assignment is assisted by DFT simulations of the Raman spectra of suitable periodic and model systems. The bands at 62 and 94 cm-1 are assigned respectively to the bending and to the stretching of the Pb-I bonds, and are thus diagnostic modes of the inorganic cage. We also assign the librations of the organic cations at 119 and 154 cm-1. The broad, unstructured 200-400 cm-1 features are assigned to the torsional mode of the methylammonium cations, which we propose as a marker of the orientational disorder of the material. Our study provides the basis to interpret the Raman spectra of organohalide perovskites, which may allow one to further understand the properties of this important class of materials in relation to their full exploitation in solar cells. © 2013 American Chemical Society.Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells
Advanced Functional Materials 24:1 (2014) 151-157