Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Shivaji Sondhi

Wykeham Professor of Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics
shivaji.sondhi@physics.ox.ac.uk
Rudolf Peierls Centre for Theoretical Physics, room 60.04
  • About
  • Publications

Classical Fractons: Local chaos, global broken ergodicity and an arrow of time

(2025)

Authors:

Aryaman Babbar, Ylias Sadki, Abhishodh Prakash, SL Sondhi
More details from the publisher

Phase space fractons

(2025)

Authors:

Ylias Sadki, Abhishodh Prakash, SL Sondhi, Daniel P Arovas
More details from the publisher

Machian fractons, Hamiltonian attractors, and nonequilibrium steady states

Physical Review B American Physical Society (APS) 110:2 (2024) 024305

Authors:

Abhishodh Prakash, Ylias Sadki, SL Sondhi
More details from the publisher

Nash states versus eigenstates for many-body quantum systems

(2024)

Authors:

Chuqiao Lin, Vir B Bulchandani, Shivaji L Sondhi
More details from the publisher

Random-Matrix Models of Monitored Quantum Circuits

Journal of Statistical Physics Springer 191:5 (2024) 55

Authors:

Vir B Bulchandani, SL Sondhi, JT Chalker

Abstract:

We study the competition between Haar-random unitary dynamics and measurements for unstructured systems of qubits. For projective measurements, we derive various properties of the statistical ensemble of Kraus operators analytically, including the purification time and the distribution of Born probabilities. The latter generalizes the Porter–Thomas distribution for random unitary circuits to the monitored setting and is log-normal at long times. We also consider weak measurements that interpolate between identity quantum channels and projective measurements. In this setting, we derive an exactly solvable Fokker–Planck equation for the joint distribution of singular values of Kraus operators, analogous to the Dorokhov–Mello–Pereyra–Kumar (DMPK) equation modelling disordered quantum wires. We expect that the statistical properties of Kraus operators we have established for these simple systems will serve as a model for the entangling phase of monitored quantum systems more generally.
More details from the publisher
Details from ORA

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet