Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Shivaji Sondhi

Wykeham Professor of Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics
shivaji.sondhi@physics.ox.ac.uk
Rudolf Peierls Centre for Theoretical Physics, room 60.04
  • About
  • Publications

One-Dimensional Luttinger Liquids in a Two-Dimensional Moiré Lattice

(2021)

Authors:

Pengjie Wang, Guo Yu, Yves H Kwan, Yanyu Jia, Shiming Lei, Sebastian Klemenz, F Alexandre Cevallos, Ratnadwip Singha, Trithep Devakul, Kenji Watanabe, Takashi Taniguchi, Shivaji L Sondhi, Robert J Cava, Leslie M Schoop, Siddharth A Parameswaran, Sanfeng Wu
More details from the publisher

Quantum oscillations in the Zeroth Landau level: serpentine Landau fan and the chiral anomaly

Physical Review Letters American Physical Society 127 (2021) 116602

Authors:

T Devakul, Yves Hon Kwan, Sl Sondhi, Sa Parameswaran

Abstract:

We identify an unusual mechanism for quantum oscillations in nodal semimetals, driven by a single pair of Landau levels periodically closing their gap at the Fermi energy as a magnetic field is varied. These `zero Landau level' quantum oscillations (ZQOs) appear in the nodal limit where the zero-field Fermi volume vanishes, and have distinctive periodicity and temperature dependence. We link the Landau spectrum of a two-dimensional (2D) nodal semimetal to the Rabi model, and show by exact solution that across the entire Landau fan, pairs of opposite-parity Landau levels are intertwined in a `serpentine' manner. We propose 2D surfaces of topological crystalline insulators as natural settings for ZQOs, and comment on implications for anomaly physics in 3D nodal semimetals.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

A comment on "Discrete time crystals: rigidity, criticality, and realizations"

(2021)

Authors:

Vedika Khemani, Roderich Moessner, SL Sondhi
More details from the publisher

Many-Body Physics in the NISQ Era: Quantum Programming a Discrete Time Crystal

PRX Quantum American Physical Society (APS) 2:3 (2021) 030346

Authors:

Matteo Ippoliti, Kostyantyn Kechedzhi, Roderich Moessner, SL Sondhi, Vedika Khemani
More details from the publisher

Recursive contact tracing in Reed-Frost epidemic models.

Physical biology 18:6 (2021)

Authors:

Saumya Shivam, Vir B Bulchandani, SL Sondhi

Abstract:

We introduce a Reed-Frost epidemic model with recursive contact tracing and asymptomatic transmission. This generalizes the branching-process model introduced by the authors in a previous work (Bulchandani et al 2021Phys. Biol.18045004) to finite populations and general contact networks. We simulate the model numerically for two representative examples, the complete graph and the square lattice. On both networks, we observe clear signatures of a contact-tracing phase transition from an 'epidemic phase' to an 'immune phase' as contact-network coverage is increased. We verify that away from the singular line of perfect tracing, the finite-size scaling of the contact-tracing phase transition on each network lies in the corresponding percolation universality class. Finally, we use the model to quantify the efficacy of recursive contact-tracing in regimes where epidemic spread is not contained.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet