Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
artwork giving an impression of bitstrings, light and quantum
Credit: I believe this widely-used image is public domain; it was obtained by download in 2015; source unknown

Prof Andrew Steane

Professor of Physics

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
Andrew.Steane@physics.ox.ac.uk
Telephone: 01865 (2)72346,01865 (2)72385
Clarendon Laboratory, room 316.2
  • About
  • Teaching
  • Publications

Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning

NEW JOURNAL OF PHYSICS 13 (2011) ARTN 123023

Authors:

DTC Allcock, L Guidoni, TP Harty, CJ Ballance, MG Blain, AM Steane, DM Lucas
More details from the publisher
Details from ORA
Details from ArXiV

The wonderful world of relativity

Oxford U.P., 2011

Keeping a Single Qubit Alive by Experimental Dynamic Decoupling

(2010)

Authors:

David J Szwer, Simon C Webster, Andrew M Steane, David M Lucas
More details from the publisher

Superfast laser cooling.

Phys Rev Lett 104:18 (2010) 183001

Authors:

S Machnes, MB Plenio, B Reznik, AM Steane, A Retzker

Abstract:

Currently, laser cooling schemes are fundamentally based on the weak coupling regime. This requirement sets the trap frequency as an upper bound to the cooling rate. In this work we present a numerical study that shows the feasibility of cooling in the strong-coupling regime which then allows cooling rates that are faster than the trap frequency with experimentally feasible parameters. The scheme presented here can be applied to trapped atoms or ions as well as to mechanical oscillators. It can also cool medium sized ion chains close to the ground state.
More details from the publisher

Superfast Cooling

(2010)

Authors:

S Machnes, MB Plenio, B Reznik, AM Steane, A Retzker
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet