Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
artwork giving an impression of bitstrings, light and quantum
Credit: I believe this widely-used image is public domain; it was obtained by download in 2015; source unknown

Prof Andrew Steane

Professor of Physics

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
Andrew.Steane@physics.ox.ac.uk
Telephone: 01865 (2)72346,01865 (2)72385
Clarendon Laboratory, room 316.2
  • About
  • Teaching
  • Publications

Context, spacetime loops and the interpretation of quantum mechanics

Journal of Physics A: Mathematical and Theoretical 40:12 (2007) 3223-3243

Abstract:

Three postulates are discussed: first that well-defined properties cannot be assigned to an isolated system, second that quantum unitary evolution is atemporal, and third that some physical processes are never reversed. It is argued that these give useful insight into quantum behaviour. The first postulate emphasizes the fundamental role in physics of interactions and correlations, as opposed to internal properties of systems. Statements about physical interactions can only be framed in a context of further interactions. This undermines the possibility of objectivity in physics. However, quantum mechanics retains objectivity through the combination of the second and third postulates. A rule is given for determining the circumstances in which physical evolution is non-unitary. This rule appeals to the absence of spacetime loops in the future evolution of a set of interacting systems. A single universe undergoing non-unitary evolution is a viable interpretation. © 2007 IOP Publishing Ltd.
More details from the publisher
More details

Long-lived mesoscopic entanglement outside the Lamb-Dicke regime

Physical Review Letters 98 (2007) 063603 4pp

Authors:

AM Steane, M. J. McDonnell, J. P. Home, D. M. Lucas,
More details from the publisher
More details
More details

How to build a 300 bit, 1 GIGA-operation quantum computer

Quantum Information and Computation 7:3 (2007) 171-183

Abstract:

Experimental methods for laser control of trapped ions have reached su cient maturity that it is possible to set out in detail a design for a large quantum computer based on such methods, without any major omissions or uncertainties. The main features of such a design are given, with a view to identifying areas for study. The machine is based on 13000 ions moved via 20μm vacuum channels around a chip containing 160000 electrodes and associated classical control circuits; 1000 laser beam pairs are used to manipulate the hyperfine states of the ions and drive fluorescence for readout. The computer could run a quantum algorithm requiring 109 logical operations on 300 logical qubits, with a physical gate rate of 1 MHz and a logical gate rate of 8 kHz, using methods for quantum gates that have already been experimentally implemented. Routes for faster operation are discussed. © Rinton Press.
More details from the publisher
More details

A tutorial on quantum error correction

Proceedings of the International School of Physics "Enrico Fermi" 162 (2006) 1-32
More details from the publisher

Down the information back-alley

Nature Physics Springer Nature 2:12 (2006) 805-806
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Current page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet