Automated characterisation and operational insights of superconducting travelling wave parametric amplifiers: unveiling novel behaviours and enhancing tunability
Journal of Instrumentation IOP Publishing 19:08 (2024) p08024
Abstract:
Superconducting travelling wave parametric amplifiers (TWPAs) exhibit great promise across various applications, owing to their broadband nature, quantum-limited noise performance, and high-gain operation. Whilst their construction is relatively simple, particularly for thin-film-based TWPAs, challenges such as the requirement for an extremely long transmission line, current fabrication limitations, and their sensitivity to fabrication tolerances, mean that their optimal operating conditions often differ from those anticipated during the design stage. As a result, manual fine-tuning of numerous operational parameters becomes necessary to recover optimal performance; a process that is both labour-intensive and time-consuming. This paper introduces an automated methodology designed to significantly accelerate the characterisation of a TWPA by several orders of magnitude without requiring human intervention. Additionally, we have developed metrics to condense the multitude of measured frequency responses of the TWPA, obtained in data cube form, into an easily-understandable format for further scientific interpretation. To demonstrate the efficacy and speed of our methodology, we utilise an existing NbTiN (niobium titanium nitride) TWPA as an example. This showcases the capability of our approach to unveil both broad- and fine-scale behaviours of the device, highlighting the importance of an automated experimental setup for the in-depth investigation of TWPAs for future developments.Far-infrared spectroscopy space telescope (FIRSST)
SPIE, the international society for optics and photonics (2024) 15
Broadband tuneable travelling wave parametric multiplier based on high-gap superconducting thin film
Proceedings Volume 13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII Society of Photo-optical Instrumentation Engineers (2024)
Abstract:
The well-established technology of the superconducting quantum parametric amplifier (SPA) can be reconfigured to perform functions beyond amplification, such as frequency multiplication, by utilising the low-noise, low-loss superconducting nonlinear transmission line. This versatile technology holds potential for various applications, including ‘pumping’ a millimetre (mm) or sub-mm wave heterodyne mixer or driving a high-frequency SPA. Its significance lies in the ability to incorporate a high-purity signal source into the cryogenic stage alongside the primary detector, thereby eliminating noise associated with room temperature sources. Additionally, there is potential for on-chip integration with the detector circuit, leading to a more compact architecture.This manuscript details the design of a travelling-wave parametric multiplier (TWPaM) that exploits the nonlinear wave-mixing mechanism to enhance the third harmonic growth from a strong pump tone injected into the travelling wave parametric amplifier (TWPA)-like device. While this functionality has been demonstrated previously, it exhibited narrowband performance. In this manuscript, we present our approach to designing a dispersion engineering scheme that enables the generation of broadband tunable tripler tones with high conversion efficiency. We showcase our design methodology using a niobium titanium nitride (NbTiN) high-gap thin-film transmission line as an example. Our presentation includes the theoretical model governing the physics of higher harmonics generation, emphasising phase-matching conditions that allow for broadband operation while suppressing unwanted modes. Although the ultimate aim is to develop a mm/sub-mm TWPaM, we aim to demonstrate the feasibility of their operation with a scaled microwave design in this manuscript. We will show that we can theoretically achieve close to 35% conversion efficiency across approximately 60% operational bandwidth.
Development of 230 GHz finline SIS mixers for next-generation large array receivers and HARP instrument upgrade
Proceedings Volume 13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII Society of Photo-optical Instrumentation Engineers (2024)
Abstract:
In pursuit of advancing large array receiver capabilities and enhancing the 16-element Heterodyne Array Receiver Program (HARP) instrument on the James Clerk Maxwell Telescope (JCMT), we have successfully fabricated 230 GHz finline superconductor-insulator-superconductor (SIS) mixers. These mixers are critical for assessing the potential and prospective for the HARP instrument’s upgrade. Unlike the existing HARP’s mixer, we replace the probe antenna with an end-fire unilateral finline as the waveguide to planar circuit transition. This mixer design is expected to operate from about 160–260 GHz (approximately 47% bandwidth), and the mixer chips’ current-voltage (I-V) curves have been characterized, showing promising results with a quality factor (Rsg/Rn) exceeding 9.3. Evaluation of the double-sideband (DSB) receiver noise temperature (Trx) is currently underway. Once successfully characterised, our immediate aim is to scale the mixer to operate at HARP’s frequency range near 345 GHz to achieve similar broad RF bandwidth performance. Ongoing simulations are currently being conducted for the design of the 345 GHz finline mixer. This work marks a crucial step toward enhancing HARP receiver performance with better sensitivity and wider Intermediate Frequency (IF) bandwidth, enabling higher-frequency observations, and expanding the scientific potential of the JCMT and its collaborative partners.Balanced travelling-wave parametric amplifiers for practical applications
Physica Scripta IOP Publishing 99:6 (2024) 065046