Simulating gas kinematic studies of high-redshift galaxies with the HARMONI integral field spectrograph
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 498:2 (2020) 1891-1904
Optical integral field spectroscopy of intermediate redshift infrared bright galaxies
Monthly Notices of the Royal Astronomical Societ Oxford University Press 486:4 (2019) 5621-5645
Abstract:
The extreme infrared (IR) luminosity of local luminous and ultraluminous IR galaxies (U/LIRGs; 11 < logLIR/L < 12 and logLIR/L > 12, respectively) is mainly powered by star formation processes triggered by mergers or interactions. While U/LIRGs are rare locally, at z > 1, they become more common, dominate the star formation rate (SFR) density, and a fraction of them are found to be normal disc galaxies. Therefore, there must be an evolution of the mechanism triggering these intense starbursts with redshift. To investigate this evolution, we present new optical SWIFT integral field spectroscopic H α + [N II] observations of a sample of nine intermediate-z (0.2Resolving star formation on subkiloparsec scales in the high-redshift galaxy SDP.11 using gravitational lensing
Astrophysical Journal American Astronomical Society 867:2 (2018) 140
Abstract:
We investigate the properties of the interstellar medium, star formation, and the current-day stellar population in the strongly lensed star-forming galaxy H-ATLAS J091043.1-000321 (SDP.11), at z = 1.7830, using new Herschel and Atacama Large Millimeter/submillimeter Array (ALMA) observations of far-infrared fine-structure lines of carbon, oxygen, and nitrogen. We report detections of the [O iii] 52 μm, [N iii] 57 μm, and [O i] 63 μm lines from Herschel/PACS, and present high-resolution imaging of the [C ii] 158 μm line, and underlying continuum, using ALMA. We resolve the [C ii] line emission into two spatially offset Einstein rings, tracing the red and blue velocity components of the line, in the ALMA/Band 9 observations at 0farcs2 resolution. The values seen in the [C ii]/far-infrared (FIR) ratio map, as low as ~0.02% at the peak of the dust continuum, are similar to those of local ULIRGs, suggesting an intense starburst in this source. This is consistent with the high intrinsic FIR luminosity (~3 × 1012 L ⊙), ~16 Myr gas depletion timescale, and lesssim8 Myr timescale since the last starburst episode, estimated from the hardness of the UV radiation field. By applying gravitational lensing models to the visibilities in the uv-plane, we find that the lensing magnification factor varies by a factor of two across SDP.11, affecting the observed line profiles. After correcting for the effects of differential lensing, a symmetric line profile is recovered, suggesting that the starburst present here may not be the result of a major merger, as is the case for local ULIRGs, but instead could be powered by star formation activity spread across a 3–5 kpc rotating disk.Near infrared throughput and stray light measurements of diffraction gratings for ELT-HARMONI
Proceedings of SPIE Society of Photo-optical Instrumentation Engineers 10706 (2018)
System analysis and expected performance of a high-contrast module for HARMONI
SPIE, the international society for optics and photonics 10702 (2018) 107029n