Simulating gas kinematic studies of high-redshift galaxies with the HARMONI integral field spectrograph
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 498:2 (2020) 1891-1904
HARMONI - first light spectroscopy for the ELT: spectrograph camera lens mounts
Proceedings of SPIE - The International Society for Optical Engineering SPIE 11451 (2020)
Abstract:
HARMONI is the first light visible and near-infrared (NIR) integral field spectrograph for the Extremely Large Telescope(ELT). The HARMONI spectrograph will have four near-infrared cameras and two visible, both with seven lenses of various materials and diameters ranging from 286 to 152 mm. The lens mounts design has been optimized for each lens material to compensate for thermal stresses and maintain lens alignment at the operational temperature of 130 K. We discuss their design and mounting concept, as well as assembly and verification steps. We show initial results from two prototypes and outline improvements in the mounting procedures to reach tighter lens alignments. To conclude, we present a description of our future work to measure the decentering of the lenses when cooled down and settled.HARMONI: First light spectroscopy for the ELT: Final design and assembly plan of the spectrographs
Proceedings of SPIE - The International Society for Optical Engineering SPIE 11447 (2020)
Abstract:
HARMONI is the first light visible and near-IR integral field spectrograph for the ELT. It covers a large spectral range from 450nm to 2450nm with resolving powers from R (≡λ/Δλ) 3500 to 18000 and spatial sampling from 60mas to 4mas. It can operate in two Adaptive Optics modes - SCAO (including a High Contrast capability) and LTAO - or with NOAO. The project is preparing for Final Design Reviews. The instrument uses a field splitter and image slicer to divide the field into 4 sub-units, each providing an input slit to one of four nearly identical spectrographs. This proceeding presents the final opto-mechanical design and the AIV plan of the spectrograph units.Optical integral field spectroscopy of intermediate redshift infrared bright galaxies
Monthly Notices of the Royal Astronomical Societ Oxford University Press 486:4 (2019) 5621-5645
Abstract:
The extreme infrared (IR) luminosity of local luminous and ultraluminous IR galaxies (U/LIRGs; 11 < logLIR/L < 12 and logLIR/L > 12, respectively) is mainly powered by star formation processes triggered by mergers or interactions. While U/LIRGs are rare locally, at z > 1, they become more common, dominate the star formation rate (SFR) density, and a fraction of them are found to be normal disc galaxies. Therefore, there must be an evolution of the mechanism triggering these intense starbursts with redshift. To investigate this evolution, we present new optical SWIFT integral field spectroscopic H α + [N II] observations of a sample of nine intermediate-z (0.2Resolving star formation on subkiloparsec scales in the high-redshift galaxy SDP.11 using gravitational lensing
Astrophysical Journal American Astronomical Society 867:2 (2018) 140